
Résumé en Français

Étant donné l’impact négatif de la dépression dans les sociétés modernes, d’importantes

initiatives de recherche ont été entreprises pour définir des systèmes de quantification

automatisée de la dépression. S’appuyant sur la vaste littérature dans ce domaine

basée sur des entretiens cliniques, cette thèse soulève trois questions majeures relq-

tivement peu explorées malgré leur pertinence: (1) le rôle de la structure du discours

dans l’analyse de la santé mentale, (2) la pertinence de la représentation de l’entrée

pour les capacités prédictives des modèles de réseaux neuronaux, et (3) l’importance

de l’expertise médicale dans le domaine de la détection automatisée de la dépression.

La nature dyadique des entretiens patient-thérapeute garantit la présence d’une

structure sous-jacente complexe au sein du discours. Néanmoins, la plupart des

recherches négligent d’exploiter cette connaissance et traitent l’entrée comme une

simple séquence de phrases, contraignant ainsi le modèle à comprendre les subtilités

de la conversation à partir d’une séquence non structurée de phrases. Dans cette

thèse, nous établissons d’abord l’importance des questions des thérapeutes dans

l’entrée du modèle neuronal, avant de montrer qu’une combinaison séquentielle de

l’entrée du patient et du thérapeute est une stratégie sous-optimale. En conséquence,

des architectures Multi-vues sont proposées comme moyen d’incorporer la struc-

ture du discours dans le processus d’apprentissage des modèles neuronaux. Les

résultats expérimentaux montrent les avantages des architectures Multi-vues pro-

posées, validant la pertinence de conserver la structure du discours dans le proces-

sus d’entrâınement du modèle. Des expériences sont menées avec deux stratégies

d’encodage de texte différentes, l’encodage de texte hiérarchique et l’encodage de

texte basé sur Sentence Transformer, pour établir davantage l’efficacité des architec-

tures proposées dans le contexte de la tâche de classification binaire.

Ayant établi la nécessité de conserver la structure du discours dans le processus

d’apprentissage, ainsi que les limites de l’encodage de texte séquentiel à cet égard,

nous explorons davantage les représentations textuelles basées sur les graphes. Les
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graphes fournissent non seulement une structure de données adaptée pour coder la

structure complexe et non linéaire de la conversation, mais ouvrent également la

possibilité de mettre en évidence des traits spécifiques des transcriptions d’entrée.

La recherche menée dans ce contexte met en lumière l’impact des représentations

d’entrée non seulement dans la définition des capacités d’apprentissage du modèle,

mais aussi dans la compréhension de leur processus prédictif. Les graphes de simi-

larité de phrases et les graphes de corrélation des mots sont utilisés pour illustrer la

capacité des représentations graphiques à fournir des perspectives variées de la même

entrée, mettant en évidence des informations qui peuvent non seulement améliorer les

performances prédictives des modèles, mais qui peuvent également être pertinentes

pour les professionnels de la santé. Le concept de multi-vues est également incorporé

dans les deux structures de graphes pour mettre davantage en évidence les différences

de perspectives entre le patient et le thérapeute au sein du même entretien. De plus,

il est démontré que la visualisation des structures de graphes proposées peut fournir

des informations précieuses indiquant des changements subtils dans le comportement

du patient et du thérapeute, ce qui suggère l’état mental du patient.

Enfin, nous mettons en évidence le manque d’implication des professionnels de

santé dans le contexte de la détection automatisée de la dépression basée sur les

entretiens cliniques. Étant donné la nature interdisciplinaire de la tâche, la partici-

pation active des cliniciens peut jouer un rôle vital dans l’amélioration des capacités

d’apprentissage des modèles d’IA et dans le renforcement de leur fiabilité et de leur

acceptation en tant qu’outils prédictifs au sein des systèmes de santé. Dans le cadre

de cette thèse, la tâche d’annotation clinique d’un corpus d’entretiens d’analyse de

la détresse mentale a été entreprise pour fournir une ressource permettant de mener

des recherches interdisciplinaires dans ce domaine. Des expériences sont définies pour

étudier l’intégration des annotations cliniques dans les modèles neuronaux appliqués

à la tâche de prédiction au niveau des symptômes. De plus, les modèles proposés

sont analysés dans le contexte des annotations cliniques afin de les analogiser avec

le processus prédictif et les tendances psychologiques des professionnels de la santé,

une étape vers leur établissement en tant qu’outils cliniques fiables.

Tous les modèles présentés dans cette thèse sont également comparés aux ini-

tiatives récentes dans le domaine, ceux-ci offrant les mielleures performances sur le

corpus de base utilizé. Nous fournissons également des annotations cliniques dudit

ensemble de données pour encourager la recherche multidisciplinaire dans le domaine.

La thèse se conclut par une description de nos initiatives de recherche en cours et

futures visant à améliorer davantage le travail présenté dans cette dissertation.
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Abstract

Given the severe and widespread impact of depression, significant research initia-

tives have been undertaken to define systems for automated depression assessment.

Building upon the extensive literature concerning automated depression detection

based on clinical interviews, this thesis raises three major questions. The research

presented in this dissertation revolves around the following questions that remain

relatively unexplored despite their relevance; (1) the role of discourse structure in

mental health analysis, (2) the relevance of input representation towards the predic-

tive abilities of neural network models, and (3) the importance of domain expertise

in automated depression detection.

The dyadic nature of patient-therapist interviews ensures the presence of a com-

plex underlying structure within the discourse. Nevertheless, most researchers fail

to exploit this knowledge and treat the input as a sequence of sentences, forcing

the model to understand the intricacies of the conversation from an unstructured se-

quence of sentences. Within this thesis, we first establish the importance of therapist

questions within the neural network model’s input, before showing that a sequential

combination of patient and therapist input is a sub-optimal strategy. Consequently,

Multi-view architectures are proposed as a means of incorporating the discourse

structure within the learning process of neural networks. Experimental results show

the advantages of the proposed multi-view architectures, validating the relevance

of retaining discourse structure within the model’s training process. Experiments

are conducted with two different text encoding strategies, hierarchical text encoding

and Sentence Transformer based text encoding, to further establish the effectiveness

of the proposed architectures in the context of binary classification task within the

depression estimation umbrella.

Having established the need to retain the discourse structure within the learn-

ing process, and the limitations of sequential text encoding in doing so, we further

explore graph based text representations. Graphs not only provide a more optimal
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data structure for encoding the complex non-linear structure of conversation, but

also open up the possibility to highlight specific traits of the input transcripts. The

research conducted in this context highlights the impact of input representations not

only in defining the learning abilities of the model, but also in understanding their

predictive process. Sentence Similarity Graphs and Keyword Correlation Graphs are

used to exemplify the ability of graphical representations to provide varying per-

spectives of the same input, highlighting information that can not only improve the

predictive performance of the models but can also be relevant for medical profes-

sionals. Multi-view concept is also incorporated within the two graph structures to

further highlight the difference in the perspectives of the patient and the therapist

within the same interview. Furthermore, it is shown that visualization of the pro-

posed graph structures can provide valuable insights indicative of subtle changes in

patient and therapist’s behavior, hinting towards the mental state of the patient.

Finally, we highlight the lack of involvement of medical professionals within the

context of automated depression detection based on clinical interviews. Given the

interdisciplinary nature of the task, the active participation of clinicians can play

a vital role in not only improving the learning ability of the automated models,

but also bolstering their reliability and acceptance as predictive tools that can be

deployed in healthcare systems. As part of this thesis, clinical annotations of the

Distress Analysis Interview Corpus - Wizard of Oz [38] (DAIC-WOZ) dataset were

performed to provide a resource for conducting interdisciplinary research in this

field. Experiments are defined to study the integration of the clinical annotations

within the neural network models applied to symptom-level prediction task within

the automated depression detection domain. Furthermore, the proposed models

are analyzed in the context of the clinical annotations in order to analogize their

predictive process and psychological tendencies with those of medical professionals,

a step towards establishing them as reliable clinical tools.

All the neural network models, architectures, and research presented in this thesis

are also compared against recent initiatives in the field, with our proposed models

providing new state-of-the-art performance evaluated on the test set of the DAIC-

WOZ dataset. We also provide clinical annotations of the said dataset to encourage

multi-disciplinary research in the field. The thesis concludes with a description of

our ongoing and future research initiatives aimed at further improving the work

presented within this dissertation.
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Chapter 1

Introduction

Mental health represents an integral part of an individual’s ability to think, emote,

interact with others, earn a living, and enjoy life in general. Consequently, mental

health underpins the core human values of independent thought and action, happiness

and friendship, and plays a vital role in defining the quality of our life. All over the

world, mental, neurological, and substance disorders are common, affecting every

community and age group across all income countries. In many Western countries,

mental disorders are the leading cause of disability, responsible for 30-40% of chronic

sick leaves and costing almost 3% of GDP1. In particular, approximately 25% of the

population is affected by them in the European region2. According to global health

estimates for the European region in 2019, the number of people with mental health

conditions (including depression, anxiety disorders and psychosis in adults, as well as

developmental and behavioral disorders in children and adolescents) stood at over 125

million, equivalent to 13% of the population. Furthermore, mental health conditions

account for 15% of all years lived with a disability in this region. Additionally, it

is estimated that 119,000 lives were lost due to suicide in this region in 2019 alone,

representing an unacceptable figure including an increasing number of young people3.

Depression is one of the most prevalent mental disorders that affects millions

of people worldwide. According to statistics from the World Health Organization

1https://www.who.int/europe/health-topics/mental-health#tab=tab 2
2World Health Organization, “The European Mental Health Action Plan 2013–2020,” 2015. [On-

line]. Available: https://bit.ly/2UvIQi6
3Global health estimates: life expectancy and leading causes of death and disability. In:

The Global Health Observatory [online database]. Geneva: World Health Organization; 2019
(https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates, accessed 16
August 2021)
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CHAPTER 1. INTRODUCTION

(WHO)4, approximately 5% of adults worldwide experienced depression in 2019,

amounting to an estimated 280 million people. The lifetime prevalence reports show

high variance, with 3% reported in Japan to 17% in the United States. Within the

US alone, depression affects more than 27 million people and is believed to be the

cause of 30,000 suicides each year [21, 36, 54]. In North America, the probability of

having a major depressive episode within a period of one year is 3–5% for males and

8–10% for females [3, 22].

Similarly to other health aspects, mental health and well-being of a person are also

affected by a wide range of individual, social, and environmental factors, including

poverty and deprivation; debt and unemployment; and violence and conflict. As

demonstrated by the economic recession following the financial crisis in 2008 and

by the SARS-CoV-2 (COVID-19) pandemic starting in 2020, the mental health of

both individuals and populations can also be undermined by macroeconomic forces

or by emergency public health measures taken to contain disease outbreaks. Within

France, in particular, COVID-19 and the resulting social and economic conditions

had a significant impact on the mental health of the population. According to the

Weekly Epidemiological Bulletin published by the French public health agency Santé

Publique France (SPF)5, 13.3% of people aged 18-75 experienced a depressive episode

during 2021, up 36% from 2017. The increase is mainly observed among young adults

(18-24 years), with 20.8% of this age group affected in 2021, compared with 11.7%

four years earlier, an increase of nearly 80%. Young women, in particular, are more

impacted (26.5%) than young men (15.2%)6.

Despite their prevalence and impact on society, global provisions and services

for identifying, supporting, and treating mental disorders of this nature and at this

magnitude have been considered insufficient [22, 24]. These mental disorders form

14% of the global burden of disease, and yet most of the affected people - up to

75% in low-income countries - lack access to necessary treatments and services7.

Although most governments in the world (almost 87%) offer some form of primary

healthcare services within the mental health domain, significant portion either do

not have specific programs or lack the budget specifically identified for mental health

[24]. The situation is further aggravated due to a lack of a reliable clinical test for the

4https://www.who.int/news-room/fact-sheets/detail/depression
5https://www.santepubliquefrance.fr/revues/beh/bulletin-epidemiologique-hebdomadaire
6https://www.lemonde.fr/en/science/article/2023/02/14/one-in-five-young-french-people-has-a-

depressive-disorder 6015640 10.html#.
7https://www.who.int/teams/mental-health-and-substance-use/treatment-care/mental-health-

gap-action-programme
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diagnosis of most forms of mental illness; with the diagnosis typically based on the

patient’s self-reported behavior, inputs from friends and family, or a mental status

examination by medical professionals which is subjective in nature.

The surge in the number of people seeking professional help for mental disorders

has led to a significant burden on the current healthcare system, with the demand

reaching beyond the capacity of the available resources in some cases. In the Ain re-

gion of France for example, the supply of psychiatric care is half the national average

with only 9 psychiatrists for 100,000 inhabitants8. The deteriorating global situa-

tion has prompted both governmental and non-governmental organizations to take

action, aiming to reduce the social and financial impacts of these mental disorders.

World Health Organization (WHO), for instance, proposed the Mental Health Gap

Action Programme (mhGAP) that aims to scale up services for mental, neurolog-

ical, and substance use disorders, especially for low- and middle-income countries.

The program asserts that with proper care, psychosocial assistance, and medication,

even in regions with scarce resources tens of millions could be treated for depression,

schizophrenia, and epilepsy, helping them lead normal lives.

1.1 Artificial Intelligence and Mental Health

Advancements in the field of computer science, powered by progress in the domains of

Machine Learning (ML) and Artificial Intelligence (AI), have allowed researchers to

develop digital tools that can support healthcare systems in managing this growing

demand while also extending their reach. Digital technologies have a far greater reach

than any healthcare system in the world, consequently, the integration of medical

services and digital tools can provide ample benefits, especially in the context of

reach and accessibility of these services. In recent years, steps have been taken by

various governments to digitize their healthcare systems. The travel restrictions and

lockdowns implemented during the COVID-19 pandemic fast-tracked this integration

process in many countries and regions in order to address not just the growing

demand but also the difficulties faced by patients in accessing these services. These

initiatives include basic measures like digitization of health records for easier access,

and also AI-based solutions for both personal and clinical use cases. One of the major

advancements in this field has been the advent of smart wearable devices like watches

and bands. These devices are not only capable of tracking an individual’s vitals, but

the data from their sensors can also be used to predict conditions like stress, anxiety,

8https://www.leprogres.fr/ain-01/2019/03/06/le-departement-en-penurie-de-psychiatres
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high/low heart rate, etc., in real-time. Progress in the field of Natural Language

Processing (NLP), in particular, has allowed for the development of systems capable

of understanding human behavior to a great extent through language. In addition

to various other applications, these tools have also been applied to the mental health

analysis field, aiming to not only reduce stress on the healthcare systems but also

exploit digital tools and technologies to extend the reach of medical services.

Automated mental health assessment has been a major research focus in recent

years, enabling real-time analysis of a much larger population, carried out accord-

ing to patient’s convenience. This includes a wide range of services ranging from

anxiety and stress detection using devices like smartwatches and bands, to the pos-

sibility of automated depression estimation based on linguistic features learned from

patients’ interactions with psychiatrists or virtual agents. Such virtual agents, ac-

cessed through mobile phones or computers, open up the possibility of catering to

the needs of a larger population as compared to in-person interviews which are the

common practice within the healthcare systems.

1.2 AI and Clinical Depression Estimation

Although the research in the field of Automated Depression Detection (ADD) relies

heavily on social media based datasets, this thesis is focused only on depression esti-

mation based on clinical interviews. Within the healthcare systems, patient-therapist

interviews are the common practice for assessing a patient’s mental health, during

which, medical professionals actively try to uncover verbal and non-verbal indicators

of the patient’s health. Therefore, in contrast to social media posts, these interviews

are more detailed and abundant in pertinent information for assessing depression.

Clinical mental health assessment depends significantly on the patient’s personal life,

consequently, such patient-therapist interviews contain highly sensitive information,

making it extremely difficult to collect and distribute such datasets. To the best of

our knowledge there are only two such datasets, the General Psychotherapy Corpus

(GPC)9 and the Distress Analysis Interview Corpus - Wizard of Oz [38] (DAIC-

WOZ) dataset, with DAIC-WOZ being the only publicly available clinical dataset10,

making it the gold standard for automated depression estimation based on clinical

interviews. The DAIC-WOZ dataset comprises interviews collected in the South-

ern California region, focusing mostly on army veterans. It contains data for visual,

9http://alexanderstreet.com
10Despite multiple attempts and emails, we were not able to gain access to the General Psy-

chotherapy Corpus (GPC) used by Xezonaki et al. [92].
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speech, and text modalities, thus encoding both linguistic and non-linguistic features.

Each participant within the study was also asked to fill out a self-assessment form,

the results of which act as ground truth within our research. Unlike other medical

conditions, Major Depressive Disorder (MDD) lack clinical tests for their evalua-

tion and quantification. For clinical assessment, medical professionals rely on their

knowledge, training, and experience to assess a patient’s mental health. Although

grounded in medical knowledge and expertise, these evaluations are subjective, with

different clinicians providing varying assessments of a patient’s mental health. In

addition to these clinical evaluations, various self-assessment tools have also been

defined for a more standardized evaluation of an individual’s mental health. These

tools represent a patient’s self-evaluation in the context of pre-defined markers, with

most implementations scoring individual symptoms on a Likert scale ranging from

0 to 3. Over the years, different self-assessment tools have been proposed with

the Beck Depression Inventory [9] (BDI) containing 21 items, the Center for Epi-

demiologic Studies Depression Scale [70] (CES-D) containing 20 questions, and the

Patient Health Questionnaire [49] (PHQ-9) with 9 symptoms being the most widely

used questionnaires. The DAIC-WOZ dataset, in particular, uses the Patient Health

Questionnaire-8 [50] (PHQ-8) self-assessment tool for generating the ground-truth

assessments of individual patients. PHQ-8 is a variant of the original PHQ-9 ques-

tionnaire formed by simply removing the question related to suicide and self-harm.

The PHQ-8 questionnaire scores the individuals based on eight markers, with their

sum acting as the final evaluation of the patient. The symptoms considered within

this questionnaire are: loss of interest, sudden change in appetite, sleeping habits,

lack of concentration, feeling of depression, feelings of failure and low self-worth, lack

of movement or hyperactivity, and lack of energy.

Recently, there has been a surge in research focused on automating depression

detection based on clinical interviews. Researchers have been leveraging inputs from

various modalities to explore how different aspects of depression manifest in patients.

DAIC-WOZ dataset provides data from all three modalities, visual, speech, and

text, allowing researchers to study changes in body language, speech patterns, and

language use of the participants. Among other effects, depression is known to impact

the use of language within the patients, with observed differences in language use

between depressed and non-depressed individuals reported in various psychological

studies [76, 11, 71]. Seeking to exploit this, researchers have been using language as a

differentiating factor between depressed and non-depressed individuals. Within the

context of DAIC-WOZ dataset, different strategies have been proposed for depression
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estimation based on language, which consists of inferring the screening tool score

(PHQ-8 score) based on transcribed clinical interviews. Multi-modal architectures

combine inputs from different modalities combining linguistic features with those

from speech and visual modalities [73, 69]. Multi-task architectures simultaneously

learn related tasks, relying on their similarities for improved model performance and

robustness [69, 68]. Gender-aware models explore the impact of gender on depression

estimation [7, 61]. Models based on hierarchical text encoding process input text at

different granularity levels [55, 92, 56], while attention models integrate external

knowledge from mental health lexicons [92], and feature-based solutions compute

multiple multi-modal characteristics [20]. Graph neural networks are used to not

only highlight the non-linear structures within the individual transcripts at both

word and sentence levels but also study the interactions between the important words

within the corpus and the interview transcripts [43, 59, 17]. Symptom-based models

treat depression estimation as an extension of the symptom prediction problem [56]

and train models to predict individual symptoms rather than the final PHQ-8 scores.

Domain-specific language models have been built [45] and large language models have

been prefix-tuned to automate depression estimation [51].

1.3 Research Hypothesis

Building upon these recent initiatives, this work also focuses on automated depres-

sion estimation based on linguistic information extracted from transcribed clinical

interviews. In particular, we work on the binary classification problem within the

ADD domain. Most recent research initiatives within this context focus on defining

complex neural architectures for processing the input transcripts, while failing to

account for other key aspects of the data. This thesis raises the following research

questions that are missing from the literature:

Question 1: What is the relevance of discourse structure in understanding the in-

terview transcripts?

Given the aim of assessing the mental health of patients, clinicians usually tend to

base their evaluations only on inputs from the patient. This belief has also percolated

into computational research with researchers discarding therapist input from the

transcript and only using patient utterances to train their models [55]. Although the

relevance of therapist utterances for mental health assessment has been verified by

Xezonaki et al. [92] (for the GPC dataset), they still consider the transcript as an

unstructured sequence of sentences. The dyadic nature of the conversation implies
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the existence of an underlying discourse structure that is not accounted for in recent

initiatives. Within this work, it is argued that incorporating the said structure into

the training process can improve the model’s performance by removing irrelevant

interactions from the input stream and training the model on more refined data.

Question 2: What role do input representations play in the ADD domain?

Conversations are inherently non-linear structures made up of complex interactions

including frequent use of past utterances as context. This is especially true for

people suffering from mental disorders who often have trouble forming coherent sen-

tences. Despite this, most research initiatives in the ADD domain use a sequential

encoding of the input transcript, forcing the model to learn the underlying linguistic

complexities from an unstructured sequence of sentences. This dissertation empha-

sizes the sub-optimal nature of sequential text representations and argues in favor of

graph-based encoding of the input transcripts allowing better representation of the

non-linear interactions within the discourse for improved predictive performance of

neural network models. This hypothesis is based on the success of graphical repre-

sentations in various text classification tasks as well as depression estimation tasks

[59, 43, 17]. Furthermore, it is shown that depending on the definition of the graph

structures, different graphical representations can provide different understandings

of the same input, which is not always possible with sequential models. Finally,

this work also explores the possibility of using these graphical representations as a

means of understanding behavioral changes from both patient and therapist input,

generating insights that can be useful for medical professionals, and using their vi-

sualizations as a quick visual synopsis for clinicians. We claim that, compared to

sequential encoding, graphs are better suited for representing patient-therapist in-

terviews not just for improving the predictive performance of the models but also as

a possible source of insights and indicators of behavioral changes.

Question 3: How reliable are neural network predictions?

One major hindrance in the use of neural networks as predictive models in the med-

ical domain is their “black box” nature. Since their predictive process cannot be

explained reliably, their integration into the healthcare system has been difficult.

This problem is further aggravated by the lack of medical professionals in the learn-

ing process of these models, further raising questions regarding the trustworthiness

of their predictions. The integration of domain expertise into the learning process of

neural network models can not only improve their predictive performance by allow-

ing them to focus on relevant information, but also strengthen their reliability and
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trustworthiness as predictive tools within the medical domain. This thesis examines

the behavior of neural network models in the context of clinical annotations and

analogizes their psychological tendencies.

1.4 Thesis Structure and Contributions

The remainder of the thesis is divided into four main chapters (chapter 2, chapter

3, chapter 4, and chapter 5). Chapter 2 details the literature review and presents

the recent research initiatives in the ADD domain based on both clinical and social

media based datasets. It also provides a detailed description of the clinical interview

based Distress Analysis Interview Corpus - Wizard of Oz [38] (DAIC-WOZ) dataset

used in the experiments discussed within this dissertation. This is followed by a

discussion on recent research initiatives in the context of the DAIC-WOZ dataset.

Finally, this chapter details some of the more relevant initiatives that have influenced

the research defined in this thesis.

Chapter 3 presents research conducted in the context of the first question. To this

end, multi-view architectures have been proposed that account for the dyadic nature

of the discourse and divide the input transcript into two views, patient view and

therapist view, restricting the number of noisy interactions encountered by the model

and controling the discourse symmetry. The two views are processed independently

and co-dependently, focusing on the relevant sentence-level interactions within the

discourse. These include interactions within the set of questions/answers (Intra-view

interactions) and those between the corresponding questions and answers (Inter-view

interactions). The validity of multi-view architecture is verified using two different

text encoding methods, hierarchical models and Sentence Transformer based pre-

trained models. Publications based on this research direction are as follows:

• Agarwal, N., Dias, G. & Dollfus, S. Agent-based Splitting of Patient-Therapist

Interviews for Depression Estimation. Workshop on Participatory Approach

to AI for Mental Health (PAI4MH) associated to 36th Conference on Neural

Information Processing Systems (NeurIPS). New Orleans, USA.

• Agarwal, N., Dias, G, & Dollfus, S. Analysing Relevance of Discourse Struc-

ture for Improved Mental Health Estimation. 9th Workshop on Computational

Linguistics and Clinical Psychology (CLPSYCH) associated to 18th Confer-

ence of the European Chapter of the Association for Computational Linguistics

(EACL). St Julians, Malta.

8



CHAPTER 1. INTRODUCTION

Chapter 4 presents research conducted in the context of the second question.

It details the different graph-based representations explored during the course of

this thesis, highlighting different aspects of the data at both transcript and corpus

levels. It further compares the predictive performance of graph-based models against

sequential text encoding based models. The multi-view concept is also extended to

graphical representations, further highlighting the difference in perspective between

the patient and the therapist, further reinforcing the model-agnostic nature of the

multi-view concept. Finally, this chapter also exemplifies insight generation in the

context of the two graph structures considered in this study. Publication based on

this research direction is as follows:

• Agarwal, N., Dias, G. & Dollfus, S. Multi-view Graph-based Interview Repre-

sentation to Improve Depression Level Estimation. Brain Informatics, 2024.

Chapter 5 presents research conducted in the context of the third and final ques-

tion. To this end, firstly, clinical annotation of the DAIC-WOZ dataset is carried out

and the model’s predictive tendencies are compared with the psychiatrist evaluations.

This chapter provides the details of the annotation process and a basic analysis of

the annotations received from the clinicians. The annotations are then incorporated

into the learning process as markings for fine-tuning the neural network models.

This is followed by comparing said annotations with both, a baseline model trained

without clinical input and a model fine-tuned using the clinical annotations. Finally,

the model’s behavior and predictive tendencies are analogized with those of medical

professionals, strengthening the reliability of neural network models. Publication

based on this research is as follows:

• Agarwal, N., Milintsevich, K., Métivier, L., Rotharmel, M., Dias, G., & Doll-

fus, S. Analyzing Symptom-based Depression Level Estimation through the Prism

of Psychiatric Expertise. Joint International Conference on Computational

Linguistics, Language Resources and Evaluation (LREC-COLING). Torino,

Italia.
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Chapter 2

Related work

In recent years there has been considerable research in the field of automated mental

health assessment. Advances in AI and machine learning techniques have allowed the

development of automated models for evaluating the mental state of people based

on inputs from different sources, thus aiming to alleviate pressure on the healthcare

systems. The severe impact depression has on a person’s mental and physical health,

combined with its widespread impact on the world population has driven significant

research into the field of automated depression estimation. Advances in the field

of deep learning and Natural Language Processing (NLP) have further provided

researchers with the tools and technologies to train more complicated neural network

models capable of learning the input much better.

Within the Automated Depression Detection (ADD) field, researchers have stud-

ied various aspects of the problem statement including data sources, data modalities,

neural network definitions, and training strategies. In terms of source of data, re-

search initiatives are mainly categorized into two groups: (1) research based on social

media posts [15, 37, 75, 80, 91, 100], and (2) research based on clinical interviews

[20, 55, 56, 61, 92]. Social media based datasets typically comprise posts scraped from

online portals like X (formally Twitter) [80, 15] and Reddit [100, 66], and generally

include individual posts from depressed (self-diagnosed) and non-depressed individ-

uals. On the other hand, clinical datasets contain actual patient-therapist interviews

aimed at the mental health assessment of an individual and are therefore more de-

scriptive and informative. This highlights a fundamental difference between the two

categories of datasets and defines their use cases. Although clinical interview based

datasets provide a more accurate and realistic representation of the clinical mental

health assessment process, social media datasets are better suited for monitoring and
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real-time interventions. Moreover, these datasets, clinical interview based datasets

in particular, can contain information encoded in multiple modalities (audio, video,

and text) allowing models to not only understand the language used by the patient,

but also learn other relevant traits like the patient’s facial expressions, and tone. Re-

searchers have explored ADD tasks based on individual data modalities [56, 92] and

also combinations of them [59, 20, 69]. Despite the availability of multiple modalities,

this research focuses only on textual data. Incorporating other modalities within the

proposed architectures is left as a future endeavor. Another widely exploited aspect

of the dataset is the possibility to define different tasks within the ADD umbrella.

Depression estimation can be studied as a regression problem predicting the final

PHQ-8 scores [56, 59, 68], a multi-class classification problem to understand depres-

sion severity [68], or as a binary classification task to differentiate between depressed

and non-depressed patients [92, 55]. Multi-task learning frameworks have also been

defined for learning more robust models by combining tasks within the ADD domain

with other tasks within the domain [59, 69], as well as other behavioral assessment

tasks [68]. As is the trend with most applications of NLP, different neural network

definitions have also been explored in the context of ADD including models based

on Recurrent Neural Network (RNN) [92, 55, 78], attention mechanisms [92], and

transformer-based language models [56]. This chapter not only describes the Dis-

tress Analysis Interview Corpus - Wizard of Oz [38] (DAIC-WOZ) dataset used in

our experiments, but also discusses some of the research initiatives in the context of

both social media based and clinical interview based datasets.

2.1 Social Media and Digital Mental Health Evaluation

Among the two different sources of data available, social media posts are possibly

the most popular one. Social media has provided a platform for people to connect

with individuals worldwide, express their emotions and feelings, and communicate

with others having similar issues, more often than not sharing experiences, and coping

mechanisms, which somewhat alleviates feelings of isolation and the stigma surround-

ing mental health issues. Within the healthcare setting, medical professionals rely

on Electronic Health Records (EHR) and clinical interviews for a patient’s mental

health assessment. Despite their clinical validity and usefulness, these input sources

suffer from two major constraints. The presence of sensitive personal information of

the patient within these interviews raises serious concerns over the privacy and con-

fidentiality of the data, making access to such datasets extremely difficult. Secondly,
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these records only hold information based on patient’s occasional meetings with the

healthcare providers, consequently, changes in their health and well-being may not be

recorded immediately, thus preventing possible real-time interventions. The growing

number of users on social media platforms, combined with the long hours people

spend on them means that social media based data is abundant compared to clinical

interviews. Although social media posts are seldom as informative as clinical inter-

views, they promise great benefits in identifying risky behavior, assessing developing

conditions, providing timely interventions to at-risk people, and reaching populations

not within the reach of current clinical setups. In fact, such approaches have already

been applied within platforms like Facebook for suicide prevention efforts12

Owing to the relative abundance of social media based data and their ability to

support real-time tracking of a person’s mental well-being, various studies have been

conducted on Automated Depression Detection based on social media posts. The

initiatives in this research direction mainly focus on social media portals and apps

like X (formerly Twitter) [80, 15], Reddit [37, 100], Instagram [75], and Facebook

[91, 29]. Gkotsis et al. [37] focus on a more fundamental problem within this re-

search direction and define neural network and deep learning based approaches for

identifying posts related to mental health on the Reddit portal. Given the huge

quantities of data available on social media platforms, it becomes imperative to rec-

ognize and filter mental-health related posts to have more refined training data.

They propose two sub-tasks within their research: firstly, a binary classification of

posts as being mental-health related or not, and secondly, the classification of each

post into one of eleven mental-health themes considered in their study. Rather than

providing final predictions, their research is suited for use within the data processing

step to filter out noisy posts from the input before training dedicated ADD models.

While a majority of the research focuses on user-generated posts for predicting Ma-

jor Depressive Disorder (MDD), Ricard et al. [75] propose an exciting approach and

incorporate community-generated information within the model input. Specifically,

they supplement user-generated content, i.e. content created by the user, like their

posts and pictures, with community-generated content, i.e. content generated by a

community of friends and followers like a post’s “likes”/comments, friends’ “wall”

posts, and followers. This community information, although not generated by the

individual users themselves, contains information about them, and friend pair’s bi-

1https://engineering.fb.com/2018/02/21/ml-applications/under-the-hood-suicide-prevention-
tools-powered-by-ai/

2https://www.theverge.com/2017/11/28/16709224/facebook-suicidal-thoughts-ai-help
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directional engagement on the social media platform. They hypothesize and show

that word-based user-generated and community-generated content contain comple-

mentary information indicative of an individual’s MDD status.

Various other research works have also been published for automatic depression

estimation based on social media posts. These include studies based on statistical

and machine learning based approaches [15, 21, 22] that utilize hand-crafted fea-

tures for the task. Various deep learning based approaches have also been explored

in recent years owing to their success in other NLP tasks. Some researchers apply

straightforward deep learning architectures for different mental health assessment

tasks [81, 89]. Others have incorporated more advanced techniques including Con-

volutional Neural Networks (CNNs) [37] and Recurrent Neural Networks (RNNs)

[78] based approaches. Advanced transformer-based language models have also been

used within this field in order to leverage their excellent language understanding [46],

with more recent works also incorporating Large Language Models (LLM) into their

research [96]. Chancellor et al. [18] provide a more detailed survey of the research

done within the field of social media based mental health assessment.

2.2 Clinical Mental Health Assessment

Contrary to social media datasets that contain short texts, clinical datasets are made

up of more descriptive patient-therapist interviews. These interviews are longer,

dyadic conversations wherein the medical professionals actively try to uncover ver-

bal and non-verbal clues about a patient’s mental health. As such, compared to social

media posts, these interviews provide a more detailed, informative and structured

input for training automated depression estimation models that can be deployed

within the healthcare system. Unfortunately, the nature of the task guarantees the

presence of sensitive information within the interview transcripts, resulting in major

concerns surrounding the collection and distribution of such datasets. To the best

of our knowledge, there are only two clinical datasets available at the moment: the

General Psychotherapy Corpus (GPC)3 and the Distress Analysis Interview Corpus

- Wizard of Oz [38] (DAIC-WOZ) dataset, with DAIC-WOZ being the only pub-

licly available dataset in this domain. The research discussed in this dissertation

is completely focused on the DAIC-WOZ dataset, the gold standard for automated

depression estimation based on clinical interviews. Subsequent parts of this chapter

discuss the DAIC-WOZ dataset and present the recent literature on automatic de-

3http://alexanderstreet.com
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pression estimation based on clinical interviews, with a specific focus on works based

on the DAIC-WOZ dataset.

2.2.1 Distress Analysis Interview Corpus - Wizard of Oz

In the context of clinical interview based automated depression estimation, Dis-

tress Analysis Interview Corpus - Wizard of Oz [38] is the most widely used public

dataset. It is part of a larger corpus, the Distress Analysis Interview Corpus (DAIC)

[38] which is a multi-modal collection of semi-structured clinical interviews. The

interviews are designed to simulate standard protocols for identifying people at risk

for conditions such as Major Depressive Disorder (MDD) and Post-Traumatic Stress

Disorder (PTSD). These interviews were collected at the University of Southern Cal-

ifornia with a larger goal of developing a computer agent that interviews participants

to identify verbal and non-verbal signs of mental illness [25]. Participants were drawn

from two distinct populations living in the Greater Los Angeles metropolitan area -

veterans of the U.S. armed forces and the general public - and are coded for depres-

sion, PTSD, and anxiety based on accepted psychiatric questionnaires. The DAIC

corpus contains four types of interviews:

Face-to-face interviews were conducted by human interviewer.

Teleconference interviews, conducted by human interviewers over a teleconferenc-

ing system.

Wizard-of-Oz interviews were conducted by a virtual agent named Ellie, controlled

by a human interviewer from another room.

Automated interviews, conducted by the virtual agent operating in a fully auto-

mated mode.

Research presented in this thesis only uses the Wizard-of-Oz part of the corpus

which is publicly available. Ellie’s behavior in the Wizard-of-Oz collection was con-

trolled by two wizards, responsible for the non-verbal behavior (e.g. nods and facial

expressions) and verbal utterances (the wizards were the interviewers from the face-

to-face and teleconference interviews). Within this setting, Ellie had a fixed set of

utterances containing pre-recorded audio of the wizard that controlled Ellie’s verbal

behavior and pre-animated gestures and facial expressions based on those typically

employed during the face-to-face interviews.

These interviews have been transcribed and annotated for variety of verbal and

non-verbal features. In addition to the transcripts, the dataset also includes the
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Depression severity
Data split

Train Val. Test

No symptoms [0..4] 47 17 22
Mild [5..9] 29 6 11

Non-depressed Total 76 23 33

Moderate [10..14] 20 5 5
Moderately severe [15..19] 7 6 7
Severe [20..24] 4 1 2

Depressed Total 31 12 14

Total 107 35 47

Table 2.1: Number of interviews for each depressive class severity in the DAIC-WOZ
dataset, distributed by train, validation, and test sets.

corresponding visual and audio features extracted from the interview recordings,

although this research solely utilizes the textual features. In addition to the in-

terviews, the participants were also asked to fill out self-assessment Patient Health

Questionnaire-8 (PHQ-8) forms. The results from these questionnaires are used as

ground truth within this research initiative, which is in line with the standard prac-

tice in the field. Depression severity was assessed based on the PHQ-8 depression

scale, with a score of 10 acting as the threshold to differentiate between depressed

and non-depressed classes within the binary classification task. The dataset is di-

vided into training, development, and test sets containing 107, 35, and 47 interviews

respectively. Furthermore, the data shows a bias towards lower PHQ-8 scores with

almost 70% data points belonging to the negative class in case of binary classification

and only 6 instances with severe depression (PHQ-8 score > 17). Table 2.1 gives a

detailed class distribution within the DAIC-WOZ dataset, while figure 2.1 provides

a sample excerpt from the dataset.

2.2.2 AI and Clinical Depression Estimation

Within the context of the DAIC-WOZ dataset, various architectures and strategies

have been proposed throughout the literature exploiting different aspects of the data

for patient’s mental health assessment.

A promising research area is to leverage inputs from different modalities into a

single learning model [73, 69, 59, 20]. This stems from the fact that clinicians also rely

on multi-modal features like facial expressions, posture, and speech characteristics,

for making their final assessment. The availability of data from multiple modalities

within the DAIC-WOZ dataset has allowed researchers to train more robust models

by combining information from multiple modalities. Qureshi et al. [69] explore the
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ellie: Who’s someone that’s been a positive influence in your life?
participant: Uh my father.
ellie: Can you tell me about that?
participant: Yeah, he is a uh
participant: He’s a very he’s a man of few words
participant: And uh he’s very calm
participant: Slow to anger
participant: And um very warm very loving man
participant: Responsible
participant: And uh he’s a gentleman has a great sense of style and he’s a great

cook
ellie: Uh huh
ellie: What are you most proud of in your life?

Figure 2.1: Sample excerpt from the wizard-of-oz interviews.

possibility of combining audio, visual, and textual input features into a single archi-

tecture using attention fusion networks. Ray et al. [73] present a similar framework

that invokes attention mechanisms at several layers to identify and extract important

features from different modalities. The network uses several low-level and mid-level

features from audio, visual, and textual modalities of the participants’ inputs. Niu

et al. [59] also incorporate patient audio into the learning process, and use an early

fusion strategy to combine audio and textual features within the input. An inter-

esting trend seen within these research initiatives is the constant presence of text

modality within the input configurations, showcasing how important a role language

plays in understanding a patient’s mental health.

Another interesting approach aims to combine different tasks that share some

common traits, thus following the multi-task paradigm. Qureshi et al. [69] and Niu

et al. [59], for example, train their models on DAIC-WOZ dataset for both regression

and classification tasks. Moving further in this multi-task learning paradigm, Qureshi

et al. [68] propose to simultaneously learn both depression level estimation and

emotion recognition on the basis that depression is a disorder of impaired emotion

regulation. They show that this combination provides improvements in performance

for the multi-class emotion classification problem as well as the regression of the

PHQ-8 score. Exploring a different research direction, Qureshi et al. [61] study

the impact of gender on depression estimation and build four different gender-aware

models that show steady improvements over gender-agnostic models. In particular,

an adversarial multi-task architecture provides the best results overall. Along the

same line, Bailey et al. [7] study gender bias from audio features as compared to
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Qureshi et al. [61], who targeted textual information. Their research findings show

that deep learning models based on raw audio are more robust to gender bias than

the ones based on other common hand-crafted features, such as mel-spectrogram.

Building on the success of hierarchical models for document classification, differ-

ent studies [55, 92] propose to encode patient-therapist interviews using hierarchical

structures as text encoding frameworks, showing boosts in performance. They pro-

pose a two-stage hierarchy that allows the model to encode both word-level and

sentence-level information. Their hierarchical models are further augmented with

attention mechanisms [6] to identify salient words and sentences within the input

transcripts. Xezonaki et al. [92] further extend their proposal and integrate affective

information (emotion, sentiment, valence, and psycho-linguistic annotations) from

existing lexicons in the form of specific embeddings. Their models aim to lever-

age the affective context of depression language by fusing these specific embeddings

with word-level features. Milintsevich et al. [56] also define a hierarchical archi-

tecture, although, they employ more advanced models from SentenceTransformer

(S-RoBERTa)4 to learn word-level features for a more contextualized understanding

of the transcript. They treat the binary classification task as an extension of symp-

tom profile prediction problem and train a multi-target hierarchical regression model

to predict individual depression symptoms from clinical interview transcripts.

Although most strategies rely on deep learning architectures, a different research

direction is proposed by Dai et al. [20], who build a topic-wise feature vector based

on a context-aware analysis over different modalities (audio, video, and text). They

show the effectiveness of these hand-crafted features by using them as inputs for

training Support Vector Machine (SVM). The success of graph-based approaches

in different linguistic tasks has also prompted their use within the ADD domain

[59, 43, 17]. Niu et al. [59] use graph structures within their architecture to grasp

relational contextual information from audio and text modality using their proposed

hierarchical context-aware model (HCAG) that captures and integrates contextual

information among relational interview questions at word and question-answer pair

levels. Hong et al. [43] and Burdisso et al. [17] explore word-word interactions

in the context of both transcript-level graphs [43] and a global corpus-level graph

encoding word-word and word-transcript interactions [17]. The remainder of this

chapter provides a detailed discussion of some of the recent initiatives in the field

that have influenced the research discussed in the subsequent chapters.

4http://huggingface.co/sentence-transformers/all-distilroberta-v1.
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2.3 Hierarchical text encoding

Hierarchical models have been proposed for document classification tasks, in or-

der to leverage the hierarchies existing in the document structure and construct a

document-level representation based on intermediate word-level and turn/sentence-

level representations [85]. These models have further been augmented with attention

mechanism [6, 86] in order to extract salient words and sentences in the document

for a more refined understanding [97]. Studies have shown that depression has an im-

pact on language use with observed differences between depressed and non-depressed

individuals [72, 11, 76]. Seeking to exploit this fact, various studies have focused on

mental health estimation through the analysis of linguistic information from tran-

scribed clinical interviews, using a hierarchical model of text encoding [55, 92, 56].

Within the context of clinical depression estimation, psychiatrists assess a pa-

tient’s mental health based on a sequence of sentences, which are themselves se-

quences of words. This hierarchical structure of depression assessment interviews

has led to the success of hierarchical text encoding based research within the ADD

field. Within such studies, most models encode hierarchies within the documents in

a bottom-up manner defining a two-stage hierarchical network. The first stage of the

hierarchy encodes word-level features and generates turn/sentence-level representa-

tions of text. The second stage of the network focuses on these learned turn/sentence

level encodings to generate a document-level representation of the input transcript.

Within this basic definition, different configurations of hierarchical models have been

defined and applied to different tasks within the ADD umbrella. Ragolta et al. [55]

and Xezonaki et al. [92] define RNN based hierarchical architectures and apply

them to classification task within the ADD domain. They rely on pre-trained word-

embedding models to generate the input word sequences. These pre-trained models

are chosen for generating input word embeddings since they are trained on a much

larger corpus, thus ensuring the stability of the generated word representations. Both

these research initiatives, Ragolta et al. [55] and Xezonaki et al. [92], use pre-trained

Global Vectors [64] (GloVe) embeddings for encoding input word representations, in

particular the 300D embeddings trained on the Common Crawl corpus are used.

These word-level embeddings are combined using RNN based encoders, specifically a

bi-directional Gated Recurrent Unit (GRU), to generate learned sentence-level rep-

resentations that act as inputs for the next stage within the hierarchy. An attention

mechanism is also applied on top of the GRU layers to account for the varying im-

portance of words in a sentence. The advantage of attention models in this context

19



CHAPTER 2. RELATED WORK

Figure 2.2: Overview of Hierarchical Model with Attentional Conditioning from [92].

is verified by Ragolta et al. [55], who compare models trained with and without

attention mechanism, showing clear advantages of using attention mechanism in hi-

erarchical models. Ragolta et al. [55] also conduct an ablation study and define three

different attention configurations: a naive approach, local attention-based approach,

and contextual attention approach (detailed in [55]), while Xezonaki et al. [92] em-

ploy attention mechanism defined by Bahdanau et al. [6] within their neural network

definition. The learned sequence of sentence representations is then fed through a

similar combination of GRU and attention mechanism to learn the document-level

representation of the transcript. These document-level representations are finally

passed through a classifier network to generate the final predictions. Figure 2.2

shows an overview of the model defined by Xezonaki et al. [92]. Building upon the
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Figure 2.3: Hierarchical architecture used by Milintsevich et al. [56]. On turn level,
the same instance of the S-RoBERTa model is used to encode each turn.

work done by Rude et al. [76], who emphasize the role of affective content as a

distinguishing factor between depressed and non-depressed language, Xezonaki et al.

[92] further incorporate external linguistic knowledge in their model. These features

(context vectors) are constructed based on various emotional, sentiment, valence,

and psycho-linguistic annotations, and concatenated to the input word representa-

tions. In the context of General Psychotherapy Corpus (GPC), they also combine

the learned session/document representation with the summary representation vec-

tor, which is the learned representation of the transcript summaries available in GPC

dataset. Within their experiments with the DAIC-WOZ dataset, this summary rep-

resentations are not used5, although the context vectors are still incorporated into

the model. An interpretation of this hierarchical model is later used for text encoding

within research on Multi-view architectures discussed in chapter 3.

Milintsevich et al. [56] propose a similar hierarchical model for symptom-based

prediction of depression. Compared to previous works [55, 92], Milintsevich et al.

[56] employ more advanced NLP techniques in their architecture (figure 2.3). The

word-level encoder defined in their architecture uses a distilled RoBERTa-based pre-

5DAIC-WOZ dataset does not provide transcript summaries as part of the data.
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trained model (S-RoBERTa) from the SentenceTransformer module6. The sentence-

level encoder is defined using a single bi-directional LSTM (BiLSTM) with additive

attention, in contrast to bi-directional GRUs used in [92]. They focus on regression

task within the ADD domain and define depression estimation as an extension of

the symptom estimation problem. As such, the model adopts a prediction head that

produces eight symptom-level regression outputs effectively making it a multi-target

regression model. An updated version of this architecture is employed for symptom

prediction in research discussed in chapter 5.

2.4 Automated depression Estimation and GNN’s

Neural network architectures like GRU, and Long Short Term Memory (LSTM)

have been the most popular architectural choices within the NLP domain. RNN

architectures, although effective on NLP tasks, were originally defined for processing

sequential time-series data. Consequently, they rely on a sequential encoding of the

input text which in itself provides a limited understanding of the non-linear linguistic

information. Although text is typically represented as a sequence of tokens, there is

a rich variety of NLP problems that can be best expressed using a graph structure.

Recent years have seen a surge of interest in applying and developing different Graph

Neural Network (GNN) based approaches to the NLP domain. These models have

achieved considerable success in many NLP tasks ranging from classification tasks like

sentence classification [42, 12], semantic role labeling [53, 39], and relation extraction

[67, 79], to generation tasks like machine translation [8, 10], question generation

[63, 77], and summarization [32, 99]. Even within the context of automated mental

health assessment, some researchers have explored the possibility of incorporating

GNNs within their learning paradigm [2, 93, 59, 43, 17].

2.4.1 Hierarchical Text Structure and GNNs

Keeping in line with the success of hierarchical models in mental health assessment

tasks, Niu et al. [59] define the Hierarchical Context-Aware Graph (HCAG) model

that not only mirrors the hierarchical structure of depression assessment by encoding

text at word and Question-Answer Pair (QA-pair) levels but also leverages Graph At-

tention Network [87] (GAT) to grasp relational contextual information of text/audio

modality. In particular, they define the HCAG which can effectively capture and

6https://huggingface.co/sentence-transformers/all-distilroberta-v1.
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Figure 2.4: An overview of the HCAG architecture taken from [59]. For brevity,
self-loop lines are ignored in this figure.

integrate contextual information among relational interview questions by applying

GAT networks to text and audio modalities. As the name suggests, HCAG em-

ploys a hierarchical representation of the input sequence, encoding it at two levels;

word/frame level and question-answer pairs (QA-pairs) level. Medical professionals

base their assessment of a patient’s mental health on patient-therapist interviews,

which are sequences of QA-pairs, which in turn are sequences of words or audio sig-

nals. QA-pair encoding layer within HCAG aims to encode the semantic relations of

questions and answers. HCAG further uses an attention mechanism to highlight the

important behavioral signals that can occur depending on the question types [41].

Finally, a graph neural network based on GAT architecture aggregates the pieces of

depressive clues among all QA-pairs. This combined contextual information is then

used for a multi-task learning strategy combining classification and regression tasks.

Figure 2.4 illustrates an overview of the HCAG model that uses the early fusion

method to combine inputs from both text and audio modalities. Niu et al. [59]
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perform manual cleaning of the interview transcripts to remove dialogic feedback

from the virtual agent (e.g.“that sounds great!”) and only the direct queries are

preserved (e.g., “how easy is it for you to get a good night’s sleep?”). Although

this enriches the data used for training the model, such manual pre-processing steps

cannot be applied at the inference stage in real-world applications. 300-dimensional

GloVe embeddings were used for word-level representations, while for audio modality

low-level Mel Frequency Cepstral Coefficients (MFCCs) [58] and extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPS) [30] audio descriptors by openS-

MILE [31] are concatenated as features. Within their experiments, audio features

are only used for the patient responses, while therapist questions are only encoded

using pre-trained GloVe embeddings. This is possibly because a virtual therapist was

used during dataset recording, which severely limits the expressive power of thera-

pist audio. HCAG model employs different techniques for encoding information at

different granularity of the hierarchical structure. The Sequential Encoder encodes

the questions and answers to generate sentence-level embeddings of the correspond-

ing QA-pairs. Forward Gated Recurrent Unit (GRU) is used to capture the local

context information within the questions, while bidirectional GRU layer encodes the

answer sequences and concatenates the forward and backward hidden states to get

the final representations. During an interview, depending on the question, patients

show signs of depression to varying degrees. HCAG model employs an additive at-

tention mechanism to account for this distribution and detect the salient elements

in the answer sequence. This mechanism defines the attention scores within the an-

swer word embedding sequence based on both answer word embeddings and the final

representation of the corresponding question. Within the second level of the hierar-

chical structure, subject encoder module captures the contextual information in the

interview. For each interview, a graph structure is defined with QA-pairs acting as

vertices and edges defined based on a sliding window protocol where each QA-pair is

connected to immediate m vertices (QA-pairs)7. The model employs GAT networks

to process the resulting graph structure and the learned node embeddings are fed into

a max aggregator to generate final transcript representation. They further exploit

a multi-task learning methodology, combining regression and classification tasks for

more robust training of the model. A similar multi-task training is also defined by

Qureshi et al. [69].

7m is treated as a hyper-parameter and tuned during model training.
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2.4.2 Exploring Word-Level Context for Depression Estimation

The ability of graph structures to highlight different features in the input text based

on the definition of nodes and edges allows researchers to focus on different aspects

of the same input data. Hong et al. [43], for example, model the DAIC-WOZ tran-

scripts as word-word interaction graphs. In contrast to Niu et al. [59] who learn

QA-pair level context within transcripts, Hong et al. [43] explore contextual infor-

mation present in word-level interactions within the transcripts. They emphasize the

importance of encoding contextual information about the PHQ-8 topics to determine

a patient’s mental health and hypothesize that the context of words in a transcript

can be used to learn this information. They motivate generating graph-based rep-

resentations of input transcripts to encode contextual information, assuming that

the transcripts contain facts representing depressive symptoms. A novel form of

node attributes are also proposed for use within the GNN based model that captures

node-specific embeddings for every word in the vocabulary. Word representations

are shared globally and are updated according to associations among words in the

transcript. The final prediction is made by summarizing representations of all the

words in the transcript.

Each transcript is represented using a word-level graph that encodes word-word

interactions based on co-occurrence patterns. All unique words appearing in the tran-

script form nodes of the graph, with edges connecting each node to words appearing

within a fixed window on its either side in the transcript. Within NLP domain,

learning vector representations that encode the meaning and context of words has

been a basic learning task. In their research, Hong et al. [43] defined a novel form

of word representations within their graph structure. Each node (word) within the

graph is represented using an embedding matrix (rather than a vector), referred to

as ‘schema’ Ui ∈ Rn×d, which performs the role of recording a global context from

interactions between current word and every other word. The jth row of Ui is a vector

of length d containing the representation that node vi has of vj , with n denoting the

total number of unique words (vocabulary size) in the corpus. These schemas allow

every word to maintain a dynamic record of the context from the given transcript.

Figure 2.5 illustrates an example of the schema update using the Schema-Based

Graph Neural Network (SGNN) model defined by Hong et al. [43]. The upper figure

shows the initial schema for the word ‘hopeless’ containing representations for its

neighboring words and itself8. The figure at the bottom shows the updated schema

8For convenience of display window size of 1 is used for displaying associated edges; in actual
experiments, the window size is larger.
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Figure 2.5: An example of schema update taken from Hong et al. [43].

for the same word after learning. The new schema encodes representations for the

new neighbors while preserving the information of existing neighbors.

Experiments done by Hong et al. [43] on the DAIC-WOZ dataset show significant

performance improvements when using schema-based SGNN models compared to

standard GNN architectures. Compared to standard GNNs that use pre-trained

embedding models for generating vector representations of nodes, schemas within

SGNN employ 2-D node features initialized with random vectors. This increases

the expressive power of the message-passing mechanism within SGNN models, thus

improving their predictive performance. Furthermore, visualization of transcript-

level word clouds (figure 2.6) based on these graph structures can highlight the

model’s focus, helping us understand the model’s learning process to some extent.

Compared to the content of transcripts illustrated by word clouds in figure 2.6 (left),

word clouds based on content selected by the SGNN model represent a very different

view of the data (figure 2.6 (right)).

2.4.3 Node-weighted Graph Convolution Networks

The use of graph-based approaches for document classification has been the focus of

various research efforts in the past. Among these studies, Yao et al. [98] proposed a
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(a) Transcript A with GT score 16 (b) Transcript A with pred. score 16.46

(c) Transcript B with GT score 19 (d) Transcript A with pred. score 17.30

Figure 2.6: A word cloud depicting words from a transcript on the development set
before and after applying the SGNN model. Word clouds on the left depict the most
salient words based on the frequency of their occurrences in raw transcripts and
those on the right illustrate the most focused content selected by the SGNN model.
Graphic taken from [43].

novel neural network method, TextGCN, for text classification that models the whole

corpus as a single heterogeneous graph and jointly learns both word and document

embeddings using Graph Convolution Network [47] (GCN) based neural network

architecture. Figure 2.7 illustrates the schematics of TextGCN taken from [98].

Burdisso et al. [17] further build on this research by adding a simple approach for

weighting self-connecting edges and showing its effectiveness on depression detection

tasks. Although both, Hong et al. [43] and Burdisso et al. [17], model word-level

interactions, the former focus on interactions within individual transcripts and define

transcript-level graphs. The latter constructs a corpus-level graph structure encoding

both word-word and word-transcript interactions.

In line with the TextGCN definition, Burdisso et al. [17] define a large hetero-

geneous text graph containing word nodes (Vwords) and training document nodes

(Vtr docs) to capture global word co-occurrence patterns within the entire corpus,

as well as the word-transcript interactions. Accordingly, the complete set of nodes

is composed as V = {Vtr docs, Vwords}. The corresponding adjacency matrix com-

prises three major edge categories: (i) word-word edges defined based on Point-wise

Mutual Information (PMI) [98, 17], (ii) self-connections for word nodes based on
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Figure 2.7: Schematic of Text GCN taken from [98]. The example is taken from
the Ohsumed corpus. Nodes beginning with ‘O’ are document nodes, while others
are word nodes. Black bold edges are document-word edges and gray thin edges
are word-word edges. R(x) means the representation (embedding) of x. Different
colors mean different document classes (only four example classes are shown to avoid
clutter). CVD: Cardiovascular Diseases, Neo: Neoplasms, Resp: Respiratory Tract
Diseases, Immun: Immunologic Diseases.

PageRank (PR) algorithm [16], and (iii) word-document edges defined based on

Term Frequency - Inverse Document Frequency (TF-IDF) features. Given a graph,

PR computes the importance of each node in relation to its role within the overall

structure of the graph. Intuitively high PMI values will strongly link word nodes

with high semantic correlation, high TF-IDF values will strongly link words to spe-

cific documents and high PR values will strongly link a node to itself proportionally

to its global structural relevance within the graph. The addition of PageRank-based

self-edges in [17] aims to mitigate the limiting assumptions of locality, and the equal

importance of self-connections vs. edges to neighboring nodes, in GCNs. This mod-

ification to the GCN structure is referred to as w-GCN.

The experiments conducted by Burdisso et al. [17] use the inductive version of

GCN as described in [88] instead of the original transductive one [47]. The word

node embeddings are defined as one-hot vectors and document node embeddings

are defined as TF-IDF representations of the given document with respect to the

training set vocabulary. Further implementation details and training process can be

referred from [17]. The label information associated with the documents is propa-

gated to the word nodes through the word-document edges, allowing the model to

learn relations between the words and output labels (e.g. depressed or control la-

bels), a key aspect favoring the interpretability of the model. Overall results (§4 in

[17]) show that the w-GCN approach consistently outperforms the vanilla version,
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(a) Overall graph with learned node em-
beddings

(b) Zoomed-in region showing clusters of
words (embeddings)

Figure 2.8: 2-Dimensional projection of node embeddings learned for DAIC-WOZ
taken from [17]. Circles denote documents, triangles words, and colors denote class
([D] - depression, [C] - control). The gray rectangle in (a) indicates the zoomed
region shown in (b). Graph edges are also included.

baseline models, and previous approaches. In particular, on the DAIC-WOZ dataset

w-GCN evidences the best performance when only the top 250 words are included

in the vocabulary. Furthermore, this w-GCN approach can provide interpretability

of the learned model. Figure 2.8 shows a 2-dimensional projection of the word and

document embeddings learned by the best performing w-GCN models. The figure

illustrates how the model can use the graph structure to learn, in the same latent

space, word and document embeddings whose distance is influenced by their mu-

tual relations and final predictions. These embeddings allow identifying clusters of

strongly related words with high co-occurrence and linked to similar documents in

the dataset, i.e., dataset-specific “topics” that could interest the medical experts.

This dissertation also describes research on graph-based representation of the

input transcripts, and provides details of experiments and analysis conducted in

this context. Chapter 4 presents work in this research direction, showing not only

improvements in the predictive abilities of the models but also exemplifying insight

generation based on visualization of the graph structures considered in the study. The

next chapter in this dissertation presents our research on the relevance of discourse

structure within the learning process of neural networks and proposes multi-view

architectures within this context.
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Chapter 3

Discourse Structure and Text

Encoding

In recent years, factors including the global health crisis, increased mental health

awareness, and a lack of mental health professionals, have motivated significant re-

search interest in the field of automated mental health assessment. Automated de-

pression estimation, in particular, has been the focus of numerous studies due to

its widespread and devastating impact, which can potentially lead to suicide in ex-

treme cases. Throughout the literature, different aspects of the problem have been

explored including but not limited to gender bias [7, 61], availability of multi-modal

data [73, 69, 59, 20], and integration of lexical knowledge [92]. Various training

methodologies like multi-task learning [69, 68], hierarchical text encoding [55, 92, 56],

and graphical networks [59, 43, 48] have also been applied to and studied within the

context of Automated Depression Detection (ADD) tasks. The research in this field

is primarily focused on two major categories of datasets; (1) social media based

datasets, and (2) clinical interview based datasets. Datasets based on social me-

dia sites comprise of posts by self-diagnosed individuals expressing their emotional

and mental state, while clinical datasets include actual patient-therapist interviews

aimed at the mental health assessment of an individual. Although social media posts

represent the psychological state of an individual, they lack the depth of information

found in clinical interviews. This research work focuses on depression estimation

based on clinical interviews, with specific interest in the dyadic nature of the con-

versations. Although, in some cases social media datasets may include conversations

between depressed individuals and other participants on the platform (including the

general population and medical professionals), these interactions are relatively short
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and not aimed towards the person’s mental health assessment.

In the clinical setting, patient-therapist interviews are the standard practice for

mental health assessment of patients. Within such interviews, the therapist tries to

identify verbal and non-verbal signs of mental distress within the patient’s behavior.

In the past years, some researchers have argued the use of only patient utterances as

input within the neural network models [55, 20], centered on the rationale that since

we aim to understand the patient’s mental health, the assessment should solely be

based on their input. This reasoning is further supported by many psychiatrists who

focus only on patient utterances during their diagnosis1. Patient-therapist interviews

are conversations involving two agents, the patient, and the therapist, and this dyadic

nature of the discourse inherently places importance on utterances from both agents.

This is especially relevant in the case of automated mental health assessment where

neural network models require therapist questions in order to contextualize patient

responses for a better understanding. One-word responses by the patients perfectly

exemplify this co-dependence between the questions and answers within an interview.

Let’s consider the patient’s response “yes”, which in the context of the question “Do

you want some water?” bears little relevance to the task. However, when the same

answer is given in the context of the question “Do you feel depressed?”, its relevance

is increased significantly. Xezonaki et al. [92] proved the importance of therapist

questions in the context of the General Psychotherapy Corpus (GPC) and show

improvements in model performance by incorporating both patient and therapist

utterances within the input. The validity of retaining therapist questions within

the model input is further justified in the context of DAIC-WOZ dataset based on

experimental results discussed later in this chapter (§3.3).

Despite the extensive list of research initiatives, ways to express the structure of

an input transcript remain a relatively unexplored research direction. In the context

of depression estimation based on text modality, most related works either exclusively

focus on the patient utterances [55, 20], or treat the overall transcript as a sequence

of sentences [92, 56]. Even with the incorporation of therapist information, this latter

case disregards the type of individual sentences as questions (therapist utterances) or

answers (patient utterances), forcing the model to understand the inter-dependencies

within a sequence of unstructured utterances. This chapter underscores not only the

significance of including therapist questions in model inputs, but also assert that

a sequential combination of patient-therapist utterances is not the most optimal

1This fact is also verified and discussed in our work on clinical annotations of the DAIC-WOZ
dataset, wherein psychiatrists only annotated patient responses (Chapter 5).
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approach for combining the two aspects of input transcripts. It is argued that the

dyadic structure of a patient-therapist interview plays an important role in defining

its meaning, and needs to be accounted for while processing the interview transcripts.

As such, Multi-view architectures are defined that utilize sentence types (questions

or answers) in an attempt to encode the said discourse structure into the model’s

learning process. In particular, the input sequence is divided into two views based

on sentence types, allowing us to not only encode the structure but also control

discourse symmetry. Experiments show clear advantages of multi-view architectures

in the context of both hierarchical text encoding and encodings from transformer

based pre-trained models, in particular the sentence-transformer models. Moreover,

figures shown in table 3.2 evidence multi-view based architectures out-performing

recent research initiatives in the field.

3.1 Multi-view Strategy and its variants

While the objective is to assess a patient’s mental health, therapist questions also

play an important role in this endeavor and provide relevant knowledge for the fi-

nal objective. In the context of sequential encoding of input text, the model learns

interactions between all possible pairs of sentences. A significant portion of these

interactions are not relevant and contribute to noise in the data. A possible exam-

ple of such noisy interactions would be the interactions between unrelated questions

and answers. To put it into perspective, let us assume an interview containing 100

question-answer pairs (200 sentences in total). A sequential encoding of this tran-

script would force the model to learn from
(
200
2

)
=19900 possible interactions, out

of which 9900 (approx 50%) interactions are between unrelated questions and an-

swers (interaction between 5th question and 12th answer for instance). Multi-view

architectures are defined to not only account for inputs from both patient and ther-

apist but also help maintain discourse structure and symmetry within the learning

process. The multi-view architectures are tailored to focus on the 10,000 remaining

interactions in the aforementioned example which are more pertinent to the discourse

structure. These include interactions within the set of questions/answers, and also

the interactions between corresponding questions and answers. This allows for a

more efficient training of neural network models based on a refined learning method-

ology that controls the amount of noise in the data. Multi-view architectures employ

sentence types, questions or answers, as a means of encoding the discourse structure

for improved predictive performance. The architecture divides the input into two
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views based on sentence types, i.e. the therapist view and the patient view, which

allows us to control the type of interactions encountered by the model during train-

ing and inference. Dedicated sub-networks are used to process the two views both

independently and co-dependently, thus learning the different types of interactions

within the transcript. This chapter first describes an interpretation of the hierar-

chical model discussed in chapter 2 (§2.3), which is used as a text encoder in the

experiments defined in the following sections. This is followed by a detailed working

of the multi-view concept based on the said encoding scheme. Finally, experiments

replacing hierarchical text encoding with pre-trained sentence-transformer models

are defined to further strengthen the validity of the multi-view concept.

3.1.1 Hierarchical Text Encoding

Hierarchical models treat a patient-therapist interview as a hierarchy of intermedi-

ate representations and are widely used within text classification tasks [102, 60, 97].

Inspired by their success in the NLP domain, hierarchical models have also been suc-

cessfully applied to the ADD field [55, 92]. This thesis also utilizes hierarchical models

for text encoding within the research on multi-view architectures. In particular, the

hierarchical model defined by Xezonaki et al. [92] is used for text encoding with

two main differences: (1) a non-RNN based implementation of hierarchical models is

defined by replacing RNN layers with a weighted sum of input-embeddings based on

attention mechanism (equ. 3.1). This choice is based on the findings of Mohankumar

et al. [57], who show the limitations of attention mechanisms over RNN encodings.

These findings are further discussed in the context of DAIC-WOZ dataset in §3.4;

(2) context vectors are not included in the attention mechanisms since lexicon-based

external knowledge is not used in this work. Figure 3.1 gives an overview of our inter-

pretation of hierarchical text encoding model, where wij represents the embedding of

the jth word of the ith sentence, Wi = {wi1, wi2, · · · , wiN} represents the word encod-

ing sequence for the ith sentence, Si is the learned representation of the ith sentence,

and r is the transcript level representation of the textual input. Word Attention

and Sentence Encoder networks are defined as self-attention networks. Formally, let

[h1, h2, ..., hN ] be the input of the attention model. The learned representation rep

is defined in Equation 3.1, where g(.) is a learnable mapping function, and γi is the

attention score of the ith input in the sequence. Note that Word Attention layer is

applied independently to all word sequences Wi, with the ith instance of the Word

Attention layer using [wij ,∀j] as the input of the self-attention mechanism giving

rise to sentence embedding Si. The Sentence Encoder layer acts on these learned
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Figure 3.1: Our non-RNN based implementation of the hierarchical model.

sentence embeddings with [Si,∀i] acting as its input sequence.

αi = g(hi)

γi =
eαi∑
eαi

rep =
∑

γi · hi

(3.1)

3.1.2 Hierarchical-Baseline

Based on the above definition of hierarchical architecture, Hierarchical-Baseline

model is also defined for a fair baseline comparison with the multi-view based defini-

tions. The model utilizes the architecture illustrated in figure 3.1 with the transcript-

level representation r used for the final prediction. Specifically, classification layers

are added to the architecture, that take transcript-level representation r as input and

generate the final model prediction. An ablation study is also conducted to investi-

gate the impact of patient and therapist utterances on the model’s learning ability.

Consequently, following three input configurations are defined within the context of

Hierarchical-Baseline configuration:

Patient. This configuration only accounts for the answers given by the patient in the

model input while ignoring the questions asked by the therapist (input configuration

similarly to the one used by Ragolta et al. [55]).
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Therapist. Here we only consider the questions asked by the therapist and remove

the patient responses from the model input. This configuration allows us to study

the presence of relevant information in therapist utterances.

Patient+Therapist. Both questions and answers are incorporated within the

model input. However, they are combined as a sequence of unstructured sentences,

thus neglecting their type as question or answer (input configuration similar to the

one used by Xezonaki et al. [92]).

3.1.3 Multi-view strategy

Multi-view architectures aim to exploit the discourse structure in order to control the

number of noisy interactions encountered by the model during training and inference.

As such, the architecture is defined to focus on the relevant interactions within

the discourse, i.e. interactions within therapist utterances (questions), interactions

within patient utterances (answers), and the interactions between the corresponding

questions and answers. It divides the input into two views based on sentence type,

patient view and therapist view, thus eliminating all inter-view interactions which are

the major source of noise in the data. The remaining relevant interactions are then

learned using dedicated sub-networks that allow the model to focus on interaction

within the two views. The co-dependency between corresponding questions and

answers in the transcript is re-introduced into the model in the form of a cross-

attention mechanism between the two views. The transcript-level representations

learned by the view-networks are combined and fed through a global network that

generates the final predictions.

Figure 3.2 illustrates the proposed multi-view architecture. Within the figure,

{WQ
1 ,WQ

2 , · · · ,WQ
N } and {WA

1 ,WA
2 , · · · ,WA

N} are the corresponding therapist and

patient view inputs, with WA
i representing the word sequence of ith sentence in

patient input and WQ
i the ith word sequence in therapist input. The networks corre-

sponding to the two views, i.e. the Therapist Network and the Patient Network, are

identical instances of the proposed interpretation of the hierarchical model (§3.1.1),

and learn transcript level representations of the therapist view (Q) and the patient

view (A) from the given word sequences. The Sentence Encoders from the hier-

archical model are renamed as View Encoders in the multi-view architecture, with

{α1, α2, ..., αN} and {β1, β2, ..., βN} representing the attention scores of the respective

sentence embeddings {Q1, Q2, ..., QN} and {A1, A2, ..., AN}. The learned transcript-

level representations of the two views (Q and A) are then combined and passed
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Figure 3.2: Multi-view architecture where the intra-view information is outlined in
red and blue, the inter-view linking is painted in orange, and the view fusion network
is shown in green.

through a Global Encoder layer that combines the two representations before gener-

ating the final prediction using classification layers (Multi Layer Perceptron (MLP)

layers). Multi-view architectures are further subdivided into two categories based on

the interactions learned by the model: (1) intra-view attention based configuration,

and (2) inter-view attention based configurations. Intra-view Attention strategy only

focuses on the interactions existing within the individual views, while the Inter-view

Attention strategy also models the co-dependency between the corresponding ques-

tions and answers.

3.1.4 Multi-view Strategies with Intra-view Attention

This configuration focuses only on the interaction within the two views (intra-view

attention). As such, the two views are treated independently of each other using

dedicated sub-networks (highlighted using blue and red colors in figure 3.2). The

underlying idea is to process the views independently before fusing the learned em-

beddings at the transcript level to generate the final prediction. This configuration

allows us to study the impact of noisy inter-view interactions and the relative con-
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tributions of the two views in the decision-making process, while allowing the model

to learn the individual perspectives of the two agents involved in the conversation.

The two sub-networks are defined as identical instances of the hierarchical model

(§3.1.1) and generate transcript-level view representations Q and A. Both view-level

attention layers (View Encoders) are defined using a self-attention mechanism and

combine sentence-level features within the respective views. These embeddings are

then fused using the Global Encoder layer before feeding it to the classification layers

(MLPs) for the final prediction. The global attention layer (Global Encoder) is also

defined as a self-attention model aimed at fusing transcript-level view representations

Q and A. This layer can be seen as an aggregator of all the information contained

in a transcript, i.e. questions and answers. Within this context, the following three

configurations can be defined for an ablation study, where the self-attention layers

are the adjustment variables.

View-Global Attention. Within this configuration both the View Encoder and the

Global Encoder layers are defined using self-attention mechanism (Equation 3.1). The

two View Encoders pay attention to the corresponding sentence encodings, whereas,

the Global Encoder learns the relative importance of the two views.

Global Attention. In this configuration, View Encoders are replaced by a simple

averaging operation instead of a self-attention layer2 resulting in equal importance

to all sentences within the input. The Global Encoder remains the same as in the

View-Global Attention model and employs self-attention mechanism.

View Attention. In this configuration, the Global Encoder is replaced by a simple

concatenation of the patient representation A and the therapist representation Q3,

while the View Encoders remain the same as in the View-Global Attention model

and employ self-attention mechanism.

3.1.5 Multi-view Strategies with Inter-view Attention

Within the context of intra-view attention models, questions and answers are treated

independently, and their co-dependency is not tackled. This is done to avoid noisy

interactions between the two views. However, the coherent structure of a dialogue

plays an essential role in the global understanding of the message conveyed by the

patient. Let’s consider a typical patient response “yes”, which in itself does not

hold much meaning or relevance. However, in context of the corresponding question,

2No attention information is acquired at the sentence level.
3There is no attention information at transcript level.
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the importance of this answer can vary significantly as exemplified earlier4. Tack-

ling this co-dependency between questions and answers is of the utmost importance

for the learning process. As a consequence, multi-view architectures, with inter-

view attention, are proposed that use a shared attention mechanism (highlighted

with orange color in figure 3.2) to model the inter-dependencies between the two

views. The shared attention mechanism transfers attention scores from one view

to another, following the cross-attention paradigm [84]. Formally, attention scores

{µ1, µ2, ..., µN} are shared between the two View Encoders, and are the result of

function µi = f(αi, βi) that combines the individual view attention scores α and

β. Experiments are conducted with five different instantiations of the function f

including both unbalanced definition (functions that define final score based on only

one of the input scores) and balanced definitions (function definitions that account

for both input scores at each step).

Patient. Unbalanced definition focusing only on the patient’s attention score.

f(αi, βi) = αi, 1 ≤ i ≤ N .

Therapist. Unbalanced definition focusing only on the therapist’s attention score.

f(αi, βi) = βi, 1 ≤ i ≤ N .

Max. Unbalanced definition that favours the view with higher attention score.

f(αi, βi) = max(αi, βi), 1 ≤ i ≤ N .

Mean. Balanced definition of f that pays equal attention to both views.

f(αi, βi) = (αi + βi)/2, 1 ≤ i ≤ N .

Learnable. A balanced definition where f(., .) is defined as self-attention (equ. 3.1)

acting on combined patient and therapist inputs hi = (Ai ⊕Qi), 1 ≤ i ≤ N . Within

this definition, f acts on the corresponding sentences embeddings rather than the

attention scores.

3.1.6 BERT-based Concept

The advent of transformer architecture has resulted in many NLP models capable

of generating rich embeddings at both word and sentence levels. These pre-trained

models provide encodings that are highly contextualized, capturing the true mean-

ing of the textual input. While the initial experiments with multi-view architectures

4Note also that a question that might not seem to be important, but for which the answer is
meaningful, should be highlighted by the learning model.
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Figure 3.3: Transformer based baseline architecture employing sentence-transformers
for text encoding.

are rooted in hierarchical text encoding scheme, research has also been expanded to

incorporate transformer-based text encoding, integrating the sentence-transformers

[74] into the model. In particular, the hierarchical models are replaced with pre-

trained sentence-transformer models to directly generate sentence-level embeddings

{Q1, Q2, · · · , QN} and {A1, A2, · · · , AN}. Furthermore, all encoder layers, Global

Encoder and View Transformer (View Encoder in hierarchical setting), are defined

using transformer-based Multi-head Attention Networks [86] in place of self-attention

model used in hierarchical architecture. Cross attention within view transformer lay-

ers is also defined based on the multi-head attention mechanism with patient and

therapist inputs playing the corresponding roles of query, key, or value based on the

situation (highlighted with corresponding colors in figure 3.4). Within this setting,

we only consider the best-performing multi-view configuration among the different

ablation studies performed with hierarchical text encodings. Thus, only ST-Baseline

model (based on Hierarchical-Baseline (Patient+Therapist) configuration) and ST-

MV model (based on Inter-view Attention (Mean) configuration) are implemented

within the context of this experiment. Figure 3.3 illustrates the proposed ST-Baseline

configuration that acts as the baseline architecture within this experiment, while fig-

ure 3.4 illustrates the multi-view based ST-MV model.
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Figure 3.4: Transformer based multi-view architecture using sentence-transformer as
text encoder.

3.2 Implementation Details

In hierarchical text encoding setting, we use pre-trained GloVe embeddings (300D)

[64] for word encodings5. Adam optimizer is utilized with a learning rate of 5 ∗
10−4 and the binary cross-entropy (BCELoss) is the final loss function. Dropout

is also applied with the probability of 40%. Within the experiment with sentence-

transformer based text encoding, we use all-mpnet-base-v2 model for generating

sentence-level text embeddings. Adam optimizer with weighted binary cross entropy

loss (BCELoss) is used during training to account for class imbalance in data, along

with a learning rate of 5 ∗ 10−4, and dropout of 0.4. The cross-attention mechanism

in view transformer layers uses transformer based multi-head attention mechanism

with 2 attention heads, whereas, Global Encoder layer employs 4 heads.

3.3 Results

Experiments are conducted on the Distress Analysis Interview Corpus - Wizard of

Oz [38] (DAIC-WOZ) dataset that contains interviews between patients and a vir-

tual therapist in a wizard-of-oz setting. The best model is chosen based on macro

5https://github.com/stanfordnlp/GloVe
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Architectures macro F1 UAR Accuracy macro Precision
(Dev) Test (Dev) Test (Dev) Test (Dev) Test

Hierarchical Baseline
Patient (0.6413) 0.6429 (0.6369) 0.6361 (0.6969) 0.7608 (0.6725) 0.6584
Therapist (0.8253) 0.5818 (0.8095) 0.5803 (0.8484) 0.6521 (0.8611) 0.6184
Patient+Therapist (0.7555) 0.6053 (0.7440) 0.6004 (0.7878) 0.6739 (0.7847) 0.6250

MV-Intra-Att.
View-Global Attention (0.6944) 0.6811 (0.6845) 0.6674 (0.7575) 0.7391 (0.7870) 0.7252
Global Attention (0.6857) 0.7116 (0.6785) 0.7075 (0.7272) 0.7173 (0.7083) 0.6887
View Attention (0.6944) 0.6919 (0.6845) 0.6919 (0.7575) 0.6739 (0.7870) 0.6919

MV-Inter-Att.
Patient (0.5460) 0.5719 (0.5476) 0.5736 (0.6060) 0.6956 (0.5555) 0.5709
Therapist (0.7664) 0.5710 (0.7619) 0.5691 (0.7878) 0.6304 (0.7727) 0.5759
Max (0.6616) 0.5801 (0.6845) 0.5982 (0.6666) 0.6304 (0.6709) 0.5846
Mean (0.6857) 0.7319 (0.6785) 0.7232 (0.7272) 0.7173 (0.7083) 0.7450
Learnable (0.6434) 0.6043 (0.6428) 0.6093 (0.7272) 0.4782 (0.7571) 0.6020

Sentence-transformer based configurations
ST-Baseline (0.79) 0.75 (0.78) 0.75 (0.82) 0.80 (0.82) 0.77
ST-MV (0.77) 0.80 (0.76) 0.83 (0.80) 0.82 (0.79) 0.79

Table 3.1: Overall results over the DAIC-WOZ dataset. UAR stands for Unweighted
Average Recall.

F1 scores calculated over the development set and performance is evaluated over

the test set. Table 3.1 gives detailed results of the experiments, and figures show

that multi-view architectures provide a better way of combining inputs from patient-

therapist interviews as compared to sequential encoding. Multi-view models out-

perform the corresponding baseline architectures for both hierarchical and sentence-

transformer based text encodings. In particular, hierarchical encoding based multi-

view architecture MV-Inter-Att. (Mean) shows improvements of 13.84% on macro

F1 score, 13.69% on Unweighted Average Recall (UAR), and 13.15% on macro Pre-

cision compared to the corresponding baseline configuration (Hierarchical Baseline

(Patient)). Furthermore, the sentence-transformer based ST-MV model also out-

performed the corresponding baseline (ST-Baseline) showing improvements of 6.6%

on macro F1 score and 10.6% on UAR. As expected, the multi-view model with

sentence-transformer based text encoding, ST-MV, evidenced the best-performing

results of all configurations considered in our experiments, outperforming all the hi-

erarchical encoding based models, as well as the sentence-transformer based baseline

model (ST-Baseline).

The validation of pertinent information within therapist questions is confirmed

by the outcomes achieved for the Hierarchical Baseline (Therapist) model, which

exclusively employs therapist utterances as input. Additionally, comparing results
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for different Hierarchical-Baseline models, we can argue that combining questions

and answers as a sequence of sentences does not provide improvements over using

just the patient’s utterances as input (Hierarchical Baseline (Patient+Therapist) vs.

Hierarchical Baseline (Patient)). We believe that the lack of structural information

in the former input configuration plays an important role in restricting the learning

ability of the baseline model. This is dealt with by the multi-view architecture

definition, that incorporates the discourse structure in the learning process.

Comparing results obtained by the multi-view strategies with intra-view atten-

tion (MV-Intra-Att.) against the Hierarchical-Baseline models, we can assess that

multi-view architectures are a better alternative for processing patient-therapist in-

terviews. Indeed, all MV-Intra-Att. architectures provide significant performance

improvements over the Hierarchical Baseline models for all 4 evaluation metrics

considered. This highlights the significance of retaining structural information of a

dialogue during training, rather than processing an unstructured sequence of sen-

tences. In particular, multi-view architectures utilize the discourse structure and

disregard the inter-view interactions within the discourse, thus reducing the number

of noisy interactions and allowing the model to focus on relevant information for

more efficient training.

Further results support our argument of co-dependence between questions and

answers with the inter-view attention based multi-view model, MV-Inter-Attention

(Mean), outperforming all other architectures including the corresponding Hierarchical-

Baseline and MV-Intra-Att. configurations. This proves that despite inter-view in-

teractions being a major source of noise in the data, co-dependency between the

corresponding questions and answers needs to be retained. However, this improve-

ment does not stand for all cross-attention functions considered in this study. Indeed,

we observe that results obtained with non-balanced attention functions (i.e. Patient,

Therapist, Max) are lower compared to (1) the balanced attention functions (i.e.

Mean, Learnable), and (2) all other configurations (i.e. Hierarchical-Baselines and

MV-Intra-Att.). Within non-balanced definitions of function f , attention scores are

transferred from one view to the other based on the hypothesis that only one of the

two views drives the learning process. As such, these models represent the extreme

case of cross-attention, where questions’ (resp. answers) importance is directly based

on corresponding answers’ (resp. questions) importance while neglecting their own

attention score. Results prove that both views, patient and therapist, play a role in

defining their importance, and selecting either one as the sole criterion for impor-

tance can be counterproductive. Both models based on balanced definitions of f(.)
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Architectures Modality
macro F1 UAR

(Dev) Test (Dev) Test

Raw Audio [7] Audio (0.66) - - -
SVM:m-M&S [20] All (0.96) 0.67 - -
HCAG [59] Text + Audio (0.92) - (0.92) -
HCAN [55] Text (0.51) 0.63 (0.54) 0.66
HLGAN [55] Text (0.60) 0.35 (0.60) 0.33
HAN [92] Text (0.46) 0.62 (0.48) 0.63
HAN+L [92] Text (0.62) 0.70 (0.63) 0.70
HCAG+T [59] Text (0.77) - (0.82) -
Symptom prediction [56] Text (0.80) 0.74 - -

ST-Baseline Text (0.79) 0.75 (0.78) 0.75
ST-MV Text (0.77) 0.80 (0.76) 0.83

Table 3.2: Comparison of best Multi-view models against recent initiatives.

performed better than their non-balanced counterparts, with the best performance

evidenced by the Mean configuration. We expected the MV-Inter-Attention (Learn-

able) model to perform on par with the MV-Inter-Attention (Mean) architecture, if

not better. We believe that the small size of the dataset played an important role in

restricting the model’s ability to learn a more complex attention function, leading to

reduced predictive performance.

Table 3.2, compares the best-performing model (Linear-MV ) against recent re-

search initiatives over the DAIC-WOZ dataset. Results show Linear-MV model suc-

cessfully outperforming recent initiatives with comparable setups (HAN [92], HCAN

[55]) as well as those relying on external knowledge (HAN+L [92]) or different modal-

ities (SVM:m-M&S [20]). Note that the reported results are taken directly from the

original papers and some related work surprisingly do not evidence results over the

test split, such as HCAG and HCAG+T [59], although they perform highly on the

development set.

3.4 LSTM vs. No-LSTM: An Analysis

Recurrent neural networks such as LSTM have traditionally been used as a way to

encode text sequences [101]. Within the context of long text encoding, they form the

core representation modelling of intermediate layers of hierarchical architectures [13,

92]. However, recent research [57] have shown limitations of using RNNs, especially

when combined with attention models. Within this context, Mohankumar et al. [57]

show that learned representations of LSTM have high conicity across time steps,

which can lead to unreliable attention scores. High conicity refers to the fact that
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(a) Model with LSTM. (b) Model without LSTM.

Figure 3.5: Plots of attention scores for the training data. Each color represents one
interview transcripts. Values are given for 4 different batches of 32 interviews.

element-wise intermediate representations are similar to each other, thus limiting

diversity in representation expressiveness.

Similar findings have been evidenced in our experiments as we found that the

LSTM-based intermediate representations of the hierarchical architecture have high

conicity, thus leading to low variation in attention scores as illustrated in Figure

3.5a. Oppositely, we observed that our non-RNN based implementation of hierar-

chical models (§3.1.1), where attention scores are learned over the concatenation of

embeddings, provides high variation in attention scores as shown in Figure 3.5b. As a

consequence, best performance results for the classification task have been obtained

with the non-RNN-based implementation.

3.5 Conclusion

This chapter presents initial research on understanding the importance of discourse

structure within automated depression estimation tasks. We not only validate the

importance of retaining the therapist’s questions within model input in the context of

ADD, but also show that a sequential combination of the two input streams, patient

utterances and therapist utterances, is not ideal. Multi-view architectures are pro-

posed for automated depression estimation, that treat patient-therapist interviews

as a combination of two views (therapist questions and patient responses) rather

than a single unstructured document. The underlying idea is not only to incorporate

utterances from both agents within the model input but also to retain the discourse

structure within the learning process for improved results. In particular, the pre-

sented multi-view approach allows models to handle discourse structure as well as
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symmetry, thus outperforming models trained on simple sequential encoding of text.

Our experimental results showcase the importance of removing noisy interac-

tions from the learning process of the neural network models. MV-Intra-Att. con-

figuration perfectly exemplifies this with all configurations within this setting out-

performing the corresponding baseline (Hierarchical Baseline) architectures. MV-

Intra-Att. models disregard the inter-view interactions within the discourse and

focus only on the intra-view relations. The success of MV-Intra-Att. configuration

over the baseline models confirms the presence of irrelevant information in an un-

structured sequence of sentences, consequently proving the relevance of incorporating

discourse structure in the model training process.

Further improvements evidenced by the MV-Inter-Att. (Mean) model validate

the co-dependency between the corresponding questions and answers in an interview.

In particular, MV-Inter-Att. (Mean) configuration evidenced the best results, in

the context of hierarchical text encoding, by taking into account both intra- and

inter-view interactions. Other configurations examined within the MV-Inter-Att.

category, non-balanced attention based configurations (patient, therapist, and max)

in particular, perform poorly in comparison to the other definitions. This further

strengthens our claim that both views play an important role in the decision-making

process, and choosing either one as the sole criterion for defining sentence importance

can be counter-productive.

Results on the DAIC-WOZ dataset show that the multi-view architecture steadily

outperforms corresponding baseline architectures for both hierarchical and sentence-

transformer based text encoding. They further show improvements over recent re-

search initiatives in the field and not only provide improvements over models with

comparable architectures (HAN [92], HCAN [55]), but also those using external

knowledge (HAN+L [92]) or multiple modalities (SVM:m-M&S [20]). We plan to

continue exploring the importance of discourse structure within the automated de-

pression estimation paradigm and further investigate ways of encoding the input text

for more efficient training. Another research direction can be to investigate the inte-

gration of the multi-view concept with external knowledge and multiple modalities.

Building on the need to incorporate discourse structures into the learning process

of neural networks, the next chapter presents research done on graph based input

representations of the interview transcripts. The study not only employs graph

structures to improve the representation of non-linear interactions within interviews

but also showcases insight generation through their visualization.
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Chapter 4

Input Representations and

Insight Generation

Conversations are the most prevalent form of human communication used to con-

vey a wide variety of information and emotions. These dialogues represent highly

complicated structures made up of complex interactions between various parts of the

discourse. Dyadic conversations, in particular, embody intricate interactions wherein

both participants not only articulate their thoughts but are also required to contex-

tualize their responses according to other person’s utterances. This is particularly

true in the case of patient-therapist interviews where the meaning of the patient re-

sponses needs to be studied in the context of the corresponding therapist questions.

Patient responses in turn influence the questions asked by the therapist to uncover

signs of mental distress in their behavior. Within the context of Automated Depres-

sion Detection (ADD), researchers have been exploring novel techniques for better

encoding patient-therapist interviews. However, their focus has mostly been towards

defining neural architectures for improved predictive performance within the various

sub-tasks under the ADD umbrella. Within such studies, defining better neural ar-

chitectures takes center stage, while the input transcript is treated as an unstructured

sequence of sentences. Their work reflects the ideology that given a complex enough

architecture and training process, a neural network model can learn the intricacies

of patient-therapist discourse (and language in general) from the given unstructured

sequence of sentences. This strategy is perfectly exemplified by the recent success of

Large Language Models (LLM) like GPT-3 [35], InstructGPT [62], GPT-4 [1] that

are trained using enormous amounts of textual data scraped from the internet. These

transformer [86] based models rely purely on their architectural complexity and ad-
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vanced training methodologies for understanding language from sequentially encoded

text. These models are capable of comprehending the intricacies of human language

and showcase exceptional learning abilities. Although this represents a valid research

paradigm, we propose a slightly different approach and explore the impact of input

representation on models’ predictive capabilities. We hypothesize that correct en-

coding of the input text can highlight latent features within the input, allowing a

more efficient training of the neural network models with constrained architectural

complexity.

Input representation plays a major role in defining the learning abilities of the

neural network architectures. The initial representation of the input not only con-

trols the features learned by the neural network during training but can also help

encode the information in a way so as to facilitate the learning process. Appropri-

ate representations bring out latent attributes within the input, potentially allowing

more efficient training of the model with constrained architectural complexity. In the

context of ADD research, many researchers utilize linear data structures to encode

the input text, thereby hindering the model’s ability to discern the structure and in-

teractions within the discourse. Compared to sequential representations, graphs are

a better choice of data structure for representing the inherent non-linear interactions

that form the basis of human conversations. Graphs are discrete data structures,

composed of nodes and edges, that model complex non-linear interactions within a

given input. Furthermore, based on the definition of nodes and their interactions

(edges), different graph structures can be used to highlight different aspects of the

same input, thus providing different perspectives on the data.

Graph-based text representations have been explored in the literature with Graph

Neural Network (GNN) being applied to a variety of Natural Language Processing

(NLP) tasks ranging from classification tasks like sentence classification [42, 12], se-

mantic role labeling [53, 39], and relation extraction [67, 79], to generation tasks like

machine translation [8, 10], question generation [63, 77], and summarization [32, 99].

Building upon the success of graph neural networks and their use within NLP applica-

tions, progress has been made towards incorporating them within the mental health

analysis domain [2, 93, 59, 43, 17]. Research based on clinical interviews, in partic-

ular, has seen researchers incorporate graph structures within their models to focus

on different characteristics of the input data. Niu et al. [59] use graph structures

within their architectures to grasp relational contextual information from both audio

and text modalities. They propose Hierarchical Context-Aware Model [59] (HCAG)

which can effectively capture and integrate contextual information among relational
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interview questions at both word/frame and Question-Answer Pair (QA-pair) levels.

HCAG models aim to mirror the sequential and hierarchical structure of a depression

interview assessment and utilize graph structures to model QA-pair level interactions

within individual interview transcripts. A detailed explanation of the model can be

found in §2.4.1. While Niu et al. [59] focus on QA-pair level interactions, other

researchers have explored word-word associations for depression estimation [43, 17].

Hong et al. [43] hypothesize that the context of words in a transcript can provide

valuable knowledge for the mental health assessment of patients. As such, they focus

on word-level interactions and define transcript-level graphs where each node repre-

sents a word and connections are based on co-occurrence patterns of words. They

further propose a novel form of node attribute that captures node-specific embed-

dings for every word in the vocabulary. This provides a global representation at

each node, coupled with node-level updates according to associations among words

in the transcript. Along the same research direction, Burdisso et al. [17] also ex-

plore depression estimation based on word-level interactions. Contrary to Hong et

al. [43] who define transcript-level graph structures, Burdisso et al. [17] construct

a corpus-level graph that combines both word and transcript-level representations

into a single graph. The proposed method aims to mitigate limiting assumptions of

locality and the equal importance of self-connections vs. edges to neighboring nodes

in GCN. Their graph structure simultaneously models word-word interactions and

word-transcript interactions, allowing the network to learn transcript representations

in the context of a corpus-level word interaction graph.

Within this section, initial experiments along a similar research direction are

described, wherein we explore graph-based representations of patient-therapist in-

terviews and study their impact on the ADD task. The primary focus is directed

towards Sentence Similarity Graphs (SSG) and Keyword Correlation Graphs [19]

(KCG), which highlight distinctive features across varying levels of granularity within

the data. These graph structures not only highlight complex interactions within the

discourse but also provide a perspective that does not exist within sequential data

structures. Additionally, we also integrate the multi-view concept defined in chapter

3 within the graph representations. This extends the multi-view concept beyond its

neural architectural definition and applies it directly to input representations, thus

reinforcing its validity as a more generic concept. Moreover, this integration allows

us to treat the inputs from the two views independently, further highlighting the

difference in perspectives of the two agents. Finally, within this chapter, we also

demonstrate that the visual representation of the graph structures considered in this
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study can serve as a rapid visual synopsis of the discourse, while providing valuable

insights that can be helpful to healthcare experts in their prognosis. Automated

models for depression estimation, when deployed in the clinical setting, are meant

to assist medical professionals in their diagnostic process rather than providing a fi-

nal assessment themselves. The relevance of an automated model’s final predictions

within the mental health domain weakens in the absence of a comprehensible expla-

nation of the underlying process. As such, it is imperative for AI models to provide

knowledge or explanation regarding their decision-making process along with the

final assessment. Although they don’t constitute explanations, insights generated

from graph visualizations can highlight the important aspects of the input text. Ad-

ditionally, since these insights are generated directly from the input and not based on

complex neural network interpretations, they are more reliable compared to attention

models whose trustworthiness is debatable [44, 90].

4.1 Graph Structures and Learning Models

Graphs are discrete data structures that provide intuitive representations capable of

not only capturing the non-linear connections within conversations but also defining

intricate input representations that don’t exist in a sequential setting. Graphs are

defined as a collection of entities (nodes), and connections (edges) representing inter-

actions between said entities. This generic interpretation of graphs does not include

the definition of nodes (entities) or their interactions, allowing a plethora of graphical

representations for a given textual input with each showcasing a different understand-

ing of the text. As part of our initial study, we focus on static graph definitions that

generate the graphical transcript representation at the pre-processing stage. This

enables us to separate the generation of input representations from the final training

of the neural network model, thereby guaranteeing that our input representations

are not reliant on intricate model interpretations. Conceptually, a static graph in-

corporates different domain/external knowledge hidden in the original text sequence,

which augments the raw text with rich structured information. Within this research

we have chosen to work with two categories of graph structures; (1) Similarity based

structure, Sentence Similarity Graphs, which is one of the most basic and widely

used graphical representation of text and highlights local sentence-level interactions

within transcripts; and (2) Topical graph structures, Keyword Correlation Graphs

[19], that integrate corpus-level topical information within the graphical representa-

tion of individual transcripts. Multi-view concept is also integrated within the graph
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definitions to further highlight the different perspectives and their interactions within

the input discourse. In particular, we not only use the multi-view concept within

our network definitions but also apply it to input graph representations. Based on

the experimental results discussed in chapter 3 table 3.1 MV-Inter-Att. (Mean) con-

figuration of multi-view architecture is used within the neural networks defined in

this chapter. This configuration of multi-view architectures also inspires the multi-

view based graph representations that divide the input into corresponding views and

encode both intra-view and inter-view interactions within the discourse.

4.1.1 Sentence Similarity Graphs

Sentence Similarity Graphs are the most basic and most widely used graphical rep-

resentations of text that highlight sentence-level interactions within the input. Indi-

vidual sentences form the nodes of the graph and edges are defined based on cosine

similarity between corresponding node embeddings (sentence representations). This

graph structure focuses on encoding local sentence-level interactions within the dis-

course. Within this context, we define two configurations that explore both the

generic definition of SSG and the multi-view infused interpretation. Figure 4.1 pro-

vides an overview of the architectures used within this setting.

Similarity-Baseline. We start with the generic definition of sentence similarity

graphs where all sentences are treated equally irrespective of their identity (patient

or therapist input). Edges are defined between all possible node pairs based on

cosine similarity between corresponding node embeddings. A similarity threshold

is applied to introduce sparsity into the graph structure and the value is treated

as a hyper-parameter during training. GNN architectures are used for processing

the input graph structure and the resulting node embeddings are passed through

transformer-based multi-head attention [86] and classification layers to generate the

final predictions. The resulting model is illustrated in figure 4.1(a).

Similarity-MV. Keeping in line with the multi-view idea, the transcript is divided

into patient and therapist inputs. Individual sentence similarity graphs are defined

for the two views (highlighted with red and blue colors in figure 4.1(b)) based on the

definition used above. These individual graphs encode the intra-view interactions

while cross-connections (highlighted in orange), represent edges between the corre-

sponding questions and answers and model inter-view interactions. GNNs are used

to process the resulting graph structure and the learned sentence embeddings are

again divided into corresponding views and used as sentence-level input within the
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Figure 4.1: Overview of (a) Similarity-Baseline and (2) Similarity-MV architec-
tures. Input color coding, red: therapist view, blue: patient view, orange: global
nodes/cross connections, green: global network.

multi-view part of the neural architecture. The integration of multi-view concept

with sentence similarity graph definition also allows us to address a limitation of

the multi-view models defined in chapter 3. Corresponding questions and answers

within dyadic interviews rely on each other to convey their true meaning. Although

the shared-attention mechanism defined in chapter 3 accounts for the co-dependency

between the attention scores of questions and answers, it does not encode their con-

textual co-dependency. Inter-view connections within Similarity-MV structure allow

exchange of actual information between corresponding questions and answers within

GNN layers, thus learning their contextualized meaning. Similarity-MV structures

not only provide a different perspective of the input transcript but also incorporate

the discourse structure better than multi-view architectures alone.
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Figure 4.2: Graphic showcasing a document, its keywords (red) and KCG represen-
tation taken from [19]. Example adapted from the Reuters dataset [52].

4.1.2 Keyword Correlation Graphs

The Original Definition of KCG

Document clustering requires a deep understanding of the complex structure of long

text; in particular, the intra-sentential (local) and inter-sentential (global) features

which are not fully captured by most representation learning models. Most methods

model text as bag-of-words or as sequences of variable-length units, and are ineffective

in capturing global features. Chiu et al. [19] propose Keyword Correlation Graph

structures that represent documents as weighted graphs of topical keywords and

integrate global information into the input using learned topical knowledge. Within

the KCG definition, topic modeling algorithms learn a set of global topics that are

used for extracting important keywords within each document. These topic models

are trained on the entire training data, and hence encode corpus-level understanding

of the text which is then incorporated within the input graph structure of individual

transcripts. Each node within the graph represents a keyword, with sentences in

the document assigned to the node they are most related to. The edges between

the nodes indicate their correlation strength calculated based on pair-wise cosine

similarity between corresponding sentence sets. The construction process for KCG

structures can be divided into 4 major steps:

1. Non-negative Matrix Factorization [33] (NMF) based topic modeling is used

to learn the set of relevant topics from the training dataset. This topical

representation of the documents is then used to extract the most important
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keywords from each document, representing nodes of resulting KCG structure.

2. Each sentence in the document is then mapped to the keyword (node) it is

most related to, thus generating

sentence sets for each node (example in figure 4.2). TF-IDF features of sen-

tences, calculated in the context of corresponding document keywords, are used

to define the importance of nodes in individual sentences.

3. Sentence Transformers (SBERT) [74] are employed for generating vector rep-

resentations of individual sentences. Each keyword node is then represented as

the average of its sentence set embeddings.

4. Edges between nodes are defined based on pair-wise cosine similarity between

the corresponding sentence embedding sets.

In their research, Chiu et al. [19] also conduct ablation studies and explore

multiple definitions of various aspects within the proposed graph structure. The

configuration defined within this section represents the best-performing definition

from these experiments. Firstly, different text embeddings were explored including

GloVe [64], Embeddings from Language Models [65] (ELMo), Bidirectional Encoder

Representations from Transformers [26] (BERT) and Sentence-BERT (SBERT) [74]

with SBERT out-performing all other methods. Further, two definitions of word-

word interactions were explored: (1) based on word co-occurrence within a fixed

window, and (2) based on pair-wise cosine similarity between corresponding sentence

sets. Edges defined based on sentence similarity performed better than the other

definition, possibly because text embeddings (like SBERT) already encode the local

semantic relations between adjacent words and sentences, thus negating the impact

of word co-occurrence edges. Given that SBERT is specifically trained for generating

state-of-the-art contextualized sentence encodings, this observation is not surprising.

Overall they define a KCG structure that can be used to highlight global corpus-

level topical information and integrate it within individual document representations.

They further define a Multi-task Graph Auto-Encoder based model and use it to

showcase the effectiveness of KCG representations in document clustering tasks.

KCG Structure in Context of Proposed Research

SSG structures, although good at representing local sentence-level interactions within

a transcript are ineffective in capturing global features. Within the context of patient-
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therapist interviews for mental health assessment, topics discussed within each tran-

script (like work, family, children, living situation, etc.) belong to a larger finite set

of topics shared across all interviews. This collection of topics constitutes a crucial

set of information that mirrors a clinician’s viewpoint on what is essential for depres-

sion assessment, drawing from their knowledge and experience. We propose to use

KCG structures in order to combine this corpus-level knowledge with transcript level

representations and define each interview as a graph of important topical keywords

representative of the transcript. Due to the semi-structured nature of interviews,

psychiatrists typically discuss every relevant aspect of a person’s life within each

interview. Consequently, to attain more distinct and differentiating topics, we focus

on topical analysis at sentence-level, and train our topic models on the collection

of sentences instead of using transcript-level text. As such, NMF topic model is

trained on the collection of individual sentences within the training set with each

sentence treated as an individual document within this step. These models capture

overarching topical knowledge at the corpus level which is employed to deduce the

significance of words within each transcript, with the top 50 keywords1 being uti-

lized as nodes within the graph structures. These keywords are representative of the

most relevant topics discussed within individual transcripts, with the entire graph

encoding interactions between the various topics. Within our experiments, node fea-

tures are learned from the corresponding sentence set embeddings during training

for a task-specific representation, rather than applying an averaging operation over

pre-trained sentence embeddings. Node Encoder layer, defined using transformer

based multi-head attention architecture [86], is used to combine sentence embed-

dings within corresponding sentence sets to generate learned node representations.

Keyword interactions are defined using average pairwise cosine similarity between

their corresponding sentence set embeddings. As in the previous case of SSG struc-

tures, multi-view inspired KCG structures are also defined, that learn independent

topic models for the two views, highlighting the difference in perspective of the two

agents. Figure 4.3 shows an overview of different configurations used within this

context.

KCG-Baseline. For the baseline configuration we treat all sentences equally and

train a single topic model on collection of all sentences within the training set.

This global topic model represents combined topical knowledge from both thera-

pist and patient inputs and is used to generate a single KCG structure for each

1This choice is based on results from [19], and has not been tuned to a task-specific value in our
current experiments.
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Figure 4.3: Overview of (a) KCG-Baseline and (2) KCG-MV configurations. Input
color coding, red: therapist view, blue: patient view, orange: global nodes/cross
connections, green: global layers acting on combined input.

transcript. Node Encoder layer learns node embeddings by combining sentence en-

codings from the corresponding sentence sets of nodes. GNN based architecture

similar to Similarity-Baseline configuration is used to further process this graph and

generate final prediction. An overview of the model is illustrated in figure 4.3(a).

KCG-MV. Although topics are shared across interviews, within this configuration

we explore the possibility that the two views of the data represent complementary

topical information. Although both patient and therapist are part of the same con-

versation, they have different purposes during the interview. A therapist participates
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in an interview with the aim of assessing the patient’s mental health, and usually

relies on a pre-defined line of questioning and topics that need to be discussed during

the interview. However, patients do not have such well defined objectives and mostly

focus on responding to the therapist’s questions. As such, topics learned from only

therapist questions represent aspects of patient life relevant towards mental health

assessment, while topics learned from patient inputs might be better suited for un-

derstanding their emotions and feelings. Within this setting, transcripts are divided

into patient and therapist inputs and individual NMF based topic models are trained

for each one. Training independent topic models for both views allows us to encode

the difference in their perspective to a higher degree. Cross connections within this

configuration are used to study patients feeling with regard to different aspects of

their life and are defined based on the presence of corresponding question and answer

in the sentence sets of the nodes. A neural network architecture similar to Similarity-

MV is used to process the resulting graph. Figure 4.3(b) shows an overview of the

architecture.

4.2 Experimental Setups

Sentence-transformers [74], all-mpnet-base-v2 in particular, are used for generating

sentence-level text encodings within the experiments. Weighted binary cross entropy

loss (BCELoss) is used to account for the class imbalance, coupled with Adam op-

timizer with learning rate of 5 ∗ 10−4 during training. Similarity threshold has been

applied to introduce sparsity into SSG structures, and the value is treated as hyper-

parameter during training. The GNN layers used within all the model definitions are

based on GCN. Other GNN definitions were experimented with but GCN was cho-

sen since it provided more stable training2. All encoder layers, Global Encoder, View

Encoder and Node Encoder, employ self-attention based on Multihead Attention Net-

works [86]. Cross-attention at View Encoder level within the multi-view architecture

is also defined using multi-head attention networks with inputs from the two views

playing respective roles among query, key and value as per requirement. Pytorch

and Pytorch Geometric [34] frameworks are used for network definition and training.

2This is further discussed in §4.3.2
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4.3 Results and Analysis

Configuration macro F1 UAR Accuracy macro Precision

ST-Baseline (0.79±0.04) (0.78±0.03) (0.82±0.03) (0.82±0.04)
ST-MV (0.77±0.02) (0.76±0.03) (0.80±0.02) (0.79±0.02)

Similarity-Baseline (0.71±0.00) (0.70±0.00) (0.76±0.00) (0.75±0.00)
Similarity-MV (0.76±0.0) (0.74±0.0) (0.79±0.0) (0.78±0.0)

KCG-Baseline (0.67±0.03) (0.66±0.03) (0.73±0.02) (0.73±0.04)
KCG-MV (0.66±0.02) (0.65±0.02) (0.72±0.01) (0.72±0.02)

Table 4.1: Overall results over the development set of DAIC-WOZ dataset. UAR
stands for Unweighted Average Recall. The best model is chosen based on F1(macro)
values over the development set.

Configuration macro F1 UAR Accuracy macro Precision

ST-Baseline 0.75±0.04 0.75±0.04 0.80±0.03 0.77±0.04
ST-MV 0.80±0.02 0.83±0.02 0.82±0.02 0.79±0.02

Similarity-Baseline 0.77±0.03 0.77±0.04 0.81±0.02 0.78±0.03
Similarity-MV 0.81±0.01 0.82±0.01 0.83±0.01 0.80±0.01

KCG-Baseline 0.68±0.01 0.69±0.01 0.72±0.01 0.68±0.01
KCG-MV 0.76±0.03 0.74±0.03 0.81±0.02 0.80±0.02

Table 4.2: Overall results over the test set of DAIC-WOZ dataset. UAR stands for
Unweighted Average Recall. The best results over the test set are highlighted.

Tables 4.1 and 4.2 provide detailed results for all configurations considered in

this study. Models are chosen based on macro F1 scores on the development set

and performance on both the development (table 4.1) and the test set (table 4.2)

are reported. Mean and standard deviation are calculated over 5 random initial-

izations of the models. In order to establish a sequential baseline, we also include

results from multi-view experiments (chapter 3) with comparable neural network

architectures applied to linear input configuration (ST-MV and ST-Baseline). Fig-

ures prove that graph-based representation of transcripts provides better and more

stable performance compared to sequential representation. In particular, Similarity-

MV representation evidences best-performing results on the test set for 3 out of 4

evaluation metrics outperforming all other configurations considered in our research.

Moreover, for both SSG and KCG based input representations, multi-view infused

configurations outperform their corresponding baseline models for all evaluation met-

rics.
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Architectures Modality
macro F1 UAR

(Dev) Test (Dev) Test

Raw Audio [7] A (0.66) - - -
SVM:m-M&S [20] T+V+A (0.96) 0.67 - -
HCAG [59] T+A (0.92) - (0.92) -
HCAN [55] T (0.51) 0.63 (0.54) 0.66
HLGAN [55] T (0.60) 0.35 (0.60) 0.33
HAN [92] T (0.46) 0.62 (0.48) 0.63
HAN+L [92] T (0.62) 0.70 (0.63) 0.70
HCAG+T [59] T (0.77) - (0.82) -
Symptom Pred. [56] T (0.72) 0.74 - -

ST-MV T (0.66) 0.80 (0.65) 0.83
Similarity-MV T (0.76) 0.81 (0.74) 0.82

Table 4.3: State-of-the-art results on DAIC-WOZ. T, V and A stand for Text, Visual
and Audio modalities respectively. Note that the reported results are taken directly
from the original papers, and some related work surprisingly do not evidence results
over the test split, such as HCAG and HCAG+T [59], although they perform highly
on the development set.

From Table 4.3, we further show that our best-performing model (Similarity-MV )

provides new state-of-the-art results over the DAIC-WOZ dataset, outperforming

recent initiatives including those relying on external knowledge (HAN+L [92]), dif-

ferent modalities (SVM:m-M&S [20]) or multi-target learning (Symptom Prediction

[56]). Figure 4.4 also proves that graph-based models not only provide state-of-the-

art results, but also have a stable learning curve, which is a desirable property for

applications in the medical domain.

4.3.1 Comparing Sequential and Graphical Representations

Comparing sequential and Sentence Similarity based models, we see clear improve-

ments with graphical representations for both Baseline and MV configurations.

Specifically, Similarity-Baseline outperforms ST-Baseline by 2.6% on macro F1 score

while Similarity-MV outperforms ST-MV by 1.2% for the same metric. Overall,

Similarity-Baseline outperforms ST-Baseline for 4 out of 4 metrics while Similarity-

MV evidences better results than ST-MV for 3 out of 4 metrics. The results under-

score the advantage of graphical models in not only improving predictive performance

but also demonstrating greater stability (see figure 4.4) compared to sequential mod-

els. This makes them more reliable for applications in the medical domain.

Both KCG based input representations (KCG-Baseline and KCG-MV) performed

poorly compared to sequential and SSG based approaches. As mentioned earlier,
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Figure 4.4: Plot of F1-score (macro) against epochs for different configurations on
test set.

questions and answers within mental health assessment interviews rely on each other

for contextual information that plays a vital role in defining their meaning. Although

the structural definition of KCG allows them to model corpus level knowledge that

is missing from SSG structure into the input graphs, they lack in their ability to

represent local sentence level interactions. This lack of local information signifi-

cantly restricts the learning ability of the model, especially for this data where the

two views (questions and answers) share a strong contextual bond. This is evident

from the results (table 4.2) where KCG based configurations systematically under

perform compared to other models, thus showing the strong co-dependence between

corresponding questions and answers in defining their meaning. Its important to

note that within this part of the research, KCG representations are used only to

exemplify different possibilities within graphical input representations and showcase

their ability to highlight various aspects of the interview. Results shown for KCG

based inputs use same configurations as defined by Chiu et al. [19] and have not been

tuned to task specific values. These models contain various aspects, ranging from

graph parameters like number of key-words, and definition of cross-connections, to
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topic model parameters like number of topics, text pre-processing methods, etc., that

need to be tuned to data specific configuration. Both views in KCG-MV configura-

tion can further have their own set of hyper-parameters, thus increasing the number

of possibilities. Although we expect the results to improve with configurations tuned

specifically for mental health assessment (and DAIC-WOZ dataset specifically), it

requires detailed research into the various aspects of KCG definition which is part of

our ongoing and future research efforts.

4.3.2 Comparison of Baselines With Multi-view Graph Structures

Within our experiments, multi-view based representations steadily outperform the

corresponding baseline configurations for both sentence similarity graphs and key-

word correlation graphs. In particular, Similarity-MV configuration outperforms the

Similarity-Baseline configuration by 5% on macro F1, 6% on UAR, 2% on Accuracy

and 2% on macro Precision. SSG structures focus on local sentence level interactions

where the context shared between the corresponding questions and answers plays an

important role. This strong dependency between the two views restricts the graphs

ability to highlight the distinctions in their individual perspective, thus restricting

the advantage of incorporating multi-view concept within this framework. Yet, their

capability to capture interactions at the sentence level enables them to learn sen-

tence representations that are contextualized within their surroundings, resulting in

a more robust understanding of the interview.

Compared to sentence similarity graphs, KCG representations show greater im-

provements when combined with multi-view architectures. KCG-MV model out-

performs KCG-Baseline by 11% on macro F1, 7% on UAR, 12% on Accuracy and

17.6% on macro Precision. This jump can be attributed to the fact that KCG repre-

sentations focus on keyword interactions rather than sentence interactions, allowing

the model to better integrate view specific features into the graph structure. Since

Keyword Correlation Graphs represent both views as interactions between topical

keywords rather than sentences (question-answer interactions in particular), they

avoid contextual dependency between the views and learn a more independent rep-

resentations of the two views. Additionally, the training of dedicated topic models for

the two views enhances the independent encoding of view perspectives. This can be

verified by studying topics learned within the two configurations (figure 4.6) with a

detailed discussion in §4.4.2. This property of Keyword Correlation Graphs is aligned

with the multi-view idea resulting in significant performance gain by integrating the

two approaches.
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Finally, experiments have been carried out with different dense input representa-

tions including hierarchical models and BERT-based input embeddings. Among the

different combinations and configurations, sentence transformer based embeddings

evidence the best and most stable results. Different implementations for GNN’s were

also explored including GAT [87], GIN [94], and GraphSAGE [40], with all config-

urations providing similar performance. This behaviour is inline with the findings

of Dwivedi et al. [28] who show that different implementations of GNN’s evidence

similar predictive performance when applied to small datasets. Within our experi-

ments, GCN based implementation of GNN were chosen since they provided most

stable results across different initialisation.

4.4 Visualization and Insights

Although current deep learning models provide excellent results, explaining their

predictions is still a challenging task. Attention scores are widely used as a tool to

justify model predictions, however validity of these explanations is debatable [90, 44].

In healthcare applications, despite their high performance, there is a reluctance to

adopt black box neural network models. Instead, medical professionals are more

inclined towards models that provide justification for their predictions rather than

focusing solely of performance.

Our research not only aims to show the advantages of using graph-based interview

representations towards predictive ability of the models, we also motivate the notion

that input representations themselves can be used for insight generation. The aim is

not to provide explanation of model predictions, but rather to use visualizations of

the input graphs as a quick visual summary of the transcripts to be used by medical

professionals. These visualizations can highlight information within the transcripts

that might be relevant for healthcare professionals, and present it in an easy to

comprehend manner. We explore this possibility in the context of SSG and KCG

structures, and present our findings.

4.4.1 Sentence Similarity and Therapist Behaviour

Figure 4.5 shows visualization of sentence similarity graphs based on therapist inputs

for patients with different PHQ-8 scores. Each node in the graph represents a ques-

tion and the numbers are their corresponding position in input sequence. Clusters

highlighted in red comprise of conversation fillers and one word responses used by the

therapist that can be ignored for this analysis. Comparing the remaining clusters, we
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(a) PHQ-8 score 0 (Therapist input) (b) PHQ-8 score 18 (Therapist input)

Figure 4.5: Sentence similarity graphs based on therapist inputs for different PHQ
scores. Blue dashed line represent weak correlations, while black solid line represent
strong correlation.

find more descriptive graphs for people with high depression scores as compared to

patients not suffering from depression. People with depression can have a tendency

to be more reserved and usually give short and precise answers, forcing the therapist

to ask more detailed questions. This is evident from the presence of elaborate clus-

ters within figure 4.5(b), where each cluster represents therapist questions regarding

relevant aspects of a patients life including work, relationships, children, etc. A con-

trasting view is observed for patients without depression, figure 4.5(a), where we see

a significant lack of clusters within the graph. This is usually due to presence of more

detailed answers by the patient, allowing the therapist to avoid detailed questions

and rely on conversation fillers to sustain the interaction. These visualizations of

sentence similarity graphs highlight the subtle differences in therapist’s behaviour

when interacting with patients having different severity of depression, which in turn

can be an indicator of patients mental health.

4.4.2 KCG Structures and Global Viewpoints

Within the context of clinical interviews, patient and therapist have different mo-

tives for attending the interview and consequently their respective interventions can

provide complementary information about the same discourse. Topic models trained

within the KCG definition encapsulate corpus-level knowledge of the input text.

Consequently, view-specific topic models more effectively emphasize the difference

in perspective between the two agents engaged in an interview compared to a topic
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(a) Combined input (b) Patient input (c) Therapist input

Figure 4.6: Topics learned with different inputs.

model trained on combined input. Figure 4.6 shows the topics learned within the

KCG-Baseline (combined input) and KCG-MV (patient input and therapist input)

configurations. In order to understand patients’ mental health, it is desirable to

study the emotions and feelings associated with important aspects of their lives.

This involves learning both, the global set of the relevant topics (representing im-

portant aspects of a persons life) and patient attitude towards them. Comparing the

different topic models in figure 4.6, we clearly see that topics based on therapist in-

puts (figure 4.6(c)) are better suited for representing the various aspects of a person’s

life that have relevance in depression estimation. We see distinct topics representing

sleep (topic 1), family (topic 2), positive influence (topic 0), military service (topic

5), change in behavior (topic 8), p t s d and past diagnoses (topic 9), which cor-

relate with information desired by medical professionals. Within such interviews,

therapists usually have a methodical approach towards the interview trajectory, as

reflected in the clearly defined topics derived from their inputs. Conversely, patients

have a slightly less pronounced role in defining the structure of discourse, primarily

responding to topics chosen by the therapist, figure 4.6(b). Although topics learned

on the combined input, figure 4.6(a), contain information on both views, they don’t

provide a complete knowledge of either and lack specific topics representing impor-
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tant characteristics within each view.

4.4.3 KCG Structures and Transcript Level Visualization

Another interesting trait of KCG representations can be seen in the visualizations

of individual transcript level graphs. Since these graphs are defined in terms of

interactions between most relevant keywords within individual interviews, their vi-

sualization can act as a topical summary of the transcript. Within the context of

structured interviews, most global topics are discussed in each transcript albeit with

varying importance depending on each patient’s situation. KCG structures utilize

this fact by selecting the most important keywords within the transcript in order to

highlight the subtle patterns that can be indicative of patients mental health. An

example is shown in figure 4.7 that compares graph visualizations for two patients

with different depression scores. For patient with high depression score, keywords

like therapy, changes and feeling are clustered together (highlighted in red) while be-

ing absent from the graph of patients with low depression scores. Further analysis of

the entire dataset reveals a pattern where keywords like “depression”, “p t s d”, and

“therapy” frequently appear as clusters in graphs of patients with high depression

scores (score ≥ 18) while generally being absent from graphs of non-depressed pa-

tients. This highlights the fact that although topics like “depression” and “p t s d”

are discussed in most interviews, they are more relevant in the context of patients

with high depression as compared to those without depression. Consequently, their

presence in the graph can be indicative of depressive tendencies and can be easily

highlighted within KCG visualizations. These visualizations illustrate the relative

importance of different topics discussed within the interview, which in turn can be

an indication of a patient’s mental health.

4.5 Conclusion

In this chapter, we argue that the correct representation of the input can not only

play a vital role in defining the learning abilities of neural network models, but

also highlight desirable features within the transcripts. In particular, this research

initiatives is aimed at three major goals in context of automated depression esti-

mation based on DAIC-WOZ dataset: (1) investigate graph based representation of

patient-therapist interviews for improved performance based on a more efficient and

informative data representation, (2) study the incorporation of multi-view concept

within the graph definitions to better highlight the difference in perspective between
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(a) PHQ-8 score 0 (b) PHQ-8 score 20

Figure 4.7: KCG representations of transcripts with different PHQ-8 scores.

patient and therapist, and (3) explore the use of graph visualizations as a visual syn-

opsis to be used by the medical professionals. We directed our focus on static graph

structures and investigated our objectives within the context of Sentence Similarity

Graphs and Keyword Correlation Graph structures.

Experimental results show that graph based representation, Similarity-MV in

particular, evidences best-performing results, out-performing the corresponding se-

quential configuration ST-MV. In our experiments, graph-based models outperformed

the corresponding linear configurations for both baseline and multi-view based def-

initions. This shows that graph based text encoding are better at representing the

inherent non-linear interactions within conversations as compared to the widely used

sequential encoding of input text. The Similarity-MV structure defined in this chap-

ter also provides a more robust way to incorporate the discourse structure within the

learning process as compared to multi-view models discussed in chapter 3. Similarity-

MV allow the exchange of contextual information through graph edges rather than

relying on shared-attention mechanism to encode inter-view interactions as was the

case in previous definitions. Our experiments further demonstrate the ability of

graphical representations to focus on different aspects of the input based on the def-

inition of nodes and edges in the graph. Within this context, SSG structure is used

to focus on local sentence-level interactions within the transcript and encode dis-

course structure into the input representations. KCG based structures on the other

hand focus on global understanding of the dataset and encode corpus-level topical

knowledge into individual transcript representations.

We also experimented with the integration of multi-view concept with graphical
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models both at neural architecture level and graph definition. Figures in table 4.2

show that multi-view based configurations out-perform the baseline models for both

graph structures considered in our study. KCG-MV based architectures show consid-

erable gains in predictive performance, compared to KCG-Baseline, across all evalu-

ation metrics considered in this study. This stems from the fact that KCG structures

focus on topical information within the data rather than sentence-level interactions,

allowing a greater degree of independence between the two view representations. On

the other hand, sentence similarity graphs are not able to fully utilize the multi-view

concept due to their high reliance on sentence-level interactions (question-answer in-

teractions in particular). Nevertheless, our results conclusively establish multi-view

as a more generic concept than the neural architectural definition given in chapter 3

and support the idea of it being a model-agnostic concept.

Finally, we demonstrated how visualizations of the input graphs defined in our

experiments can provide valuable insights into the decision making process of AI

models. Our analysis exemplifies these insights in context of Sentence Similarity

Graphs and Keyword Correlation Graphs. We demonstrate how sentence similar-

ity graphs based only on therapist utterances can point towards subtle changes in

therapist behaviour, which in-turn can be an indication of patient’s mental health.

KCG structures, on the other hand, can be used as a quick visual summary of a tran-

script’s topical distribution. Although the semi-structured nature of these interviews

means that most topics appear in all transcripts, their relative importance varies on

a case-by-case basis and can be used as an indication of patient’s mental health. For

example, questions related to depression and p t s d are asked in almost all interviews

but keywords depression and p t s d only appear in graphs of depressed individuals.

The ability of our models to not only provide a good predictive performance but

also insights into their decision-making process. This makes them ideal for use in

clinical settings where medical professionals favor explanation and insights over the

sheer predictive prowess of the model. We also compare our models against recent

research initiatives in the field (table 4.3), and show that similarity-MV configura-

tion evidenced the best results on the test set of DAIC-WOZ dataset. Our model

was able to outperform even the initiatives using external knowledge (HAN+L [92])

and multiple modalities (SVM:m-M&S [20]).

We plan to continue in this research direction and further explore the graphical

representation of patient-therapist interviews to generate relevant insights for med-

ical professionals. More specifically, we intend to delve into a more comprehensive

investigation of KCG definitions to enhance the learned topics and fine-tune the
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hyper-parameters for improved representations and predictive performance. We also

plan to work in close collaboration with clinicians to understand their views and

diagnostic processes. This would allow us to define graph structures capable of gen-

erating more valuable knowledge that can be incorporated in their decision-making

process.

The next chapter discusses our initial efforts to incorporate medical expertise into

the learning process of our neural network models. To this end, clinical annotation

of the DAIC-WOZ dataset is endeavoured, and neural networks are trained with and

without the inclusion of domain expertise. The proposed models are further analyzed

in the context of these annotations to analogize the psychological tendencies of the

models with those of trained medical professionals to strengthen their reliability and

trustworthiness as predictive tools within the healthcare system.
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Chapter 5

Depression Estimation and

Psychiatric Expertise

Valid and reliable tools for automated mental health assessment from text and speech

can prove groundbreaking. These systems can provide new opportunities for early

detection and intervention, with the active involvement of medical professionals,

covering a wider population. Their integration with mobile devices and computers

via the internet can effectively make mental health assessment and care accessible

to the majority of the world population, thus removing geographical constraints.

Advances in AI, particularly its applications in the mental health domain, have led to

significant progress in this direction with deep learning models reporting compelling

accuracy rates. Given the widespread impact and heavy toll of depression, it is not

surprising that automated depression estimation has been the focus of significant

research initiatives [56, 68, 92, 59, 43, 20, 55]. Many of these modeling efforts are

inspired by a long-term common vision of an end-to-end, automated system which

can even be deployed in clinical settings.

Despite the extensive list of research initiatives undertaken in recent years, all

these studies treat automated depression estimation as a purely computational prob-

lem with little to no involvement of medical professionals within their research

paradigm. Given the multi-disciplinary nature of the task, omitting clinicians from

the learning process implies disregarding a substantial source of domain expertise.

This lack of consideration not only limits the learning capabilities of neural network

models but also impedes their acceptance as predictive tools within the healthcare

domain. Indeed, the absence of medical professionals within the research process

means computational models for depression estimation are often disconnected from
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the lived experience and siloed from the larger debates on how to characterize and

classify mental health.

One major factor contributing towards this absence of domain knowledge within

the learning process is the lack of relevant resources and availability of information.

In the context of clinical interviews for depression estimation, the final assessment

requires the therapist to discuss personal details of a patient’s life. This creates

confidentiality and privacy concerns resulting in an acute lack of publicly available

datasets for depression estimation. The situation gets worse when looking for medical

annotations for these datasets. Although DAIC-WOZ is the only publicly available

dataset for depression estimation based on clinical interviews, clinical annotations

for the dataset do not exist. Koehler et al. [4] undertake annotation of a subset of

the DAIC dataset, however they employ crowd-workers for the process rather than

medical professionals. In the context of social media based datasets, Yadav et al.

[95] employ native English speakers from multiple disciplines for annotating their

X (formerly Twitter) based dataset. This absence of medical expertise among the

annotators undermines the credibility of these annotations.

In an attempt to encourage multi-disciplinary research within this field based

on reliable and quality medical knowledge, we carried out clinical annotation of

the DAIC-WOZ dataset. Our endeavor employs only medical professionals for the

annotation process to maintain the reliability of the markings. We further analyze our

neural network architecture in the context of these expert annotations and analogize

the psychological tendencies of medical professionals against the proposed model in

an attempt to validate its reliability as a predictive tool in clinical settings. This

chapter first defines our annotation protocols and neural network architectures and

then presents the results of our analysis.

5.1 Psychiatrist Annotations and Protocols

In recent years, there has been significant research interest in gathering and assimila-

tion of domain expertise into automated models to exploit expert knowledge within

the training process of neural network architectures. Within the context of auto-

mated depression estimation, Arseniev et al. [4] investigate the disconnect between

computational models and clinical depression diagnostics. They experimented with

DAIC-WOZ interviews and obtained layperson annotations of participants’ mental

health. In particular, crowd workers were employed to read excerpts of de-identified

and transcribed interview data in order to evaluate their mental health. The ratings
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symbolize how likely they thought a speaker had depression based on transcribed

utterances with responses selected from ”very likely”, ”likely”, ”unlikely”, ”very un-

likely” or that there was ”no evidence” either way for depression. Yadav et al. [95]

explore a similar research path but in the context of social media data. They pro-

pose a novel multi-task learning framework to accurately identify depressive symp-

toms from tweets using the auxiliary task of figurative usage detection. Moreover,

they created a dataset containing 12,155 tweets, including 3738 tweets posted by 205

self-reported depressed users over 2 weeks (the remaining 8417 tweets form the con-

trol group). The 3738 depression tweets were manually annotated using the PHQ-9

questionnaire [49] based symptom categories: lack of interest, feeling down, sleeping

disorder, lack of energy, eating disorder, low self-esteem, concentration problem, hy-

per/low activity, and self-harm. Additionally, these tweets were also labeled with the

figurative classes: metaphor and sarcasm. The annotation process was carried out by

four native English speakers from multiple disciplines who independently annotated

the tweets into 9 categories of PHQ-9. They were also asked to identify tweets hav-

ing figurative language such as sarcasm and metaphor. For reference, the annotators

were provided with the definitions and samples of annotated tweets from each of the

9 categories of PHQ-9 as well as figurative language. Conflicting annotations were

resolved using a majority voting strategy and ones voted evenly were resolved by a

psychiatrist. From the final gold standard data, 100 annotated tweets were randomly

selected from each of the symptom categories, including the non-depressive ones, and

verified by the psychiatrist.

In an attempt to reintroduce domain expertise into the learning process, we carry

out the clinical annotation of the publicly available DAIC-WOZ dataset. Our aim

behind this research is twofold: (1) to study the integration of medical knowledge

within our neural network models and (2) to provide a publicly available resource to

encourage multi-disciplinary research in the field of ADD.

In contrast to previous works that use crowd workers or native English speakers

as annotators, we employed mental health professionals for the annotations, even

though this decision prolonged the process. Given their academic and professional

background in medicine, and mental health in particular, we consider their annota-

tions to be more reliable and informative as compared to those from crowd-sourced

annotators without a medical background. In particular, three psychiatrists from

public hospitals were employed for the annotation process: one Ph.D. student, one

junior doctor, and one senior doctor. Furthermore, the annotation process was di-

vided into two major tasks: (1) span-based annotation of the transcripts and (2)
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PHQ-8 scoring based on interview transcripts.

5.1.1 Span-based Annotations

This task consists of highlighting information within transcripts that influences a

psychiatrist’s decision during an interview. Since it is a subjective task that lacks a

definitive right or wrong answer, a common consensus on the importance of various

utterances within the transcripts does not exist. Even within the field of medicine,

professionals do not universally agree on the significance of various pieces of infor-

mation, and subtle differences in opinion exist between psychiatrists based on their

knowledge and experience. As such, after various meetings and discussions with the

psychiatrists, it was agreed that the medical annotators should have complete free-

dom to annotate the transcripts without any constraints in order to capture their

true judgment. As a consequence, we forgo defining detailed annotation protocols

and rely on the annotator’s judgment as experts in the field for the reliability of

their annotations. However, they were encouraged not only to identify information

that suggests the presence of depression but also to pinpoint clues that indicate

its absence, although no distinction was made between the two categories of mark-

ings. Unfortunately, at this stage of our research, only one annotator per transcript

could be assigned due to the workload experienced by the annotators, particularly

due to the radical increase in demand for mental care after the COVID pandemic

coupled with the shortage of mental health professionals. The inherent lack of con-

sensus within this subjective task combined with the lack of multiple annotators

per transcript eliminates the need for inter-annotator agreements. In case multiple

annotators are assigned per transcript, a simple union of annotated spans would be

used to capture knowledge from all assigned annotators. Despite assigning only one

annotator per transcript, the current annotation process lasted nearly 5 months and

we anticipate this time frame to scale linearly with the increase in the number of

annotators per transcript. Nevertheless, our choice of annotators ensures the qual-

ity of annotations given their extensive education and training in the mental health

domain.

For the annotation purpose, an online tool based on the doccano1 project was

designed, which was hosted on servers from the heroku platform2 enabling the entire

annotation process to take place remotely for the convenience of the psychiatrists.

The tool was designed to allow the psychiatrists to annotate any span of text (word,

1https://github.com/doccano/doccano
2https://www.heroku.com/
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Span Level Non-Depressed Depressed

Word 467 (3.53) 227 (3.98)
Phrase 4101 (31.06) 1913 (33.56)
Sentence 0 0

Multi-sentences 77 (0.58) 42 (0.73)

Total 4645 (35.18) 2182 (38.28)

Table 5.1: Number of annotations for different levels of annotation spans. Figures
in brackets indicate the average number of annotations per transcript.

phrase, sentence, etc.) within the transcript and assign a label of importance to

each span: highly important, important (default), or minimally important. Upon

analysis, it was found that these labels did not provide any valuable information with

more than 99% of the spans marked with the default label (important), and were

therefore not used for any further analysis. The annotation process gave rise to an

average of 36.12 annotations per transcript (35.18 for the non-depressed class and

38.28 for the depressed class) with a mean length of 7.45 words (7.74 for the non-

depressed class and 7.17 for the depressed class). The distribution of the annotations

by patient class and span level is given in table 5.1. Interestingly, complete sentences

were not annotated by any of the psychiatrists, who mostly followed an ngram-

based strategy, with a small number of annotations focusing on multiple sentences.

Furthermore, none of the psychiatrists highlighted questions within the dataset with

all the annotations contained within patient responses. This behavior by medical

professionals is inline with the use of only patient responses for prediction in initial

ADD research (mentioned in chapter 3), and discussed further in §5.4.

5.1.2 PHQ-8 Scoring

This task involves the annotators completing the self-assessment Patient Health

Questionnaire-8 (PHQ-8) on behalf of each patient only based on their interview

transcripts. Although the PHQ-8 screening tool is widely used as a measure of de-

pression and has been found to be precise [82], it relies on the subjective assessment

by the patient of his/her condition outside the context of the interview. As such,

an interview transcript might not contain enough information to accurately express

the intensity of individual symptoms. Furthermore, since the interviews are con-

ducted with the aim of depression estimation and not specifically for fulfilling the

PHQ-8 questionnaire, information on some symptoms might be missing altogether

within individual transcripts depending on the questions asked during the interview.

In order to verify these propositions, we asked the clinicians to fulfill the PHQ-8

73



CHAPTER 5. DEPRESSION ESTIMATION AND PSYCHIATRIC EXPERTISE

Figure 5.1: Number of transcripts scored for each PHQ-8 symptom out of the 189
interviews of the DAIC-WOZ.

questionnaires on behalf of each patient based on their understanding of the given

transcripts. This task involves evaluating each of the 8 symptoms within the PHQ-8

questionnaire on a Likert scale ranging from 0 to 3. The statistics of this task, il-

lustrated in figure 5.1, show that 5 out of 8 symptoms (i.e. loss of interest, feeling

of depression, sleeping habits, feeling of tiredness, and feeling of failure) are steadily

mentioned in most transcripts, while 3 of them (i.e. loss of appetite, lack of concen-

tration and lack of movement) could not be measured reliably by the psychiatrists.

This confirms our claims regarding the lack of symptom-level information within in-

dividual interviews. This annotation task also acts as a human baseline, that defines

an achievable learning goal for correctly inferring PHQ-8 scores for each symptom

based on information present within the transcripts.

5.2 Learning Model and External knowledge integration

5.2.1 Neural Network Architecture

Since our research involves symptom-level analysis of depression, we extend the work

done by Milintsevich et al. [56] and define a transformer-based hierarchical model

that produces eight regression outputs for the eight symptom scores of PHQ-8. The

proposed architecture is based on the model defined by Milintsevich et al. [56], which

has been updated to access sentence-level attention and to take advantage of recent

sentence representation models. An overview of the model is shown in figure 5.2. In
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Figure 5.2: Hierarchical neural network architecture for symptom-based predictions.

particular, the architecture has undergone two significant alterations compared to

the definition in §3.2 of [56]: (1) the BiLSTM cells are replaced by a transformer-

based encoder at the interview level (Interview Encoder), and (2) the pre-trained

Turn Encoder is based on the all-mpnet-base model3 in place of S-RoBERTa4, both

using a contrastive learning objective [74].

The model consists of two encoders: the Turn Encoder (Encturn) that encodes

each sentence, and the Interview Encoder (Encint) that encodes sentence-level rep-

resentations into an interview-level embedding. Consider an interview transcript

D = {t1, ..., tn−1, tn} where ti = {wi
1, ..., w

i
m−1, w

i
m} are the dialogue turns and wi

j

is the jth token in turn ti. First Encturn encodes the token sequence of each turn

ti to generate sentence level embeddings hturni (equation 5.1). These sentence em-

beddings are then processed by Encint at the next level of hierarchy to produce

interview level representation hint (equation 5.2). The interview level embedding

is then passed through a feed-forward network that maps it to a prediction vector

m = [m1,m2, ...,m8], where each predicted label mk ∈ [0, 3] represents a symptom

score for the corresponding question in the PHQ-8 questionnaire. The feed-forward

classifier contains two linear layers with LeakyReLU activation and a LayerNorm [5]

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
4https://huggingface.co/sentence-transformers/all-distilroberta-v1
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ellie: how close are you to your family
participant: @@ very close @@ even though i don’t live with them @@ i try to see

them as much as possible @@
ellie: mhm
ellie: how do you like your living situation
participant: uh it’s ok

Figure 5.3: Example of annotation marking for training Marked-up model.

in-between. The interview encoder, Encint, contains 4 layers containing 12 attention

heads each with an intermediate size of 1536 and a hidden size of 768. This model

acts as the base architecture for the different experiments and model configurations

explored within our research and is referred to as the Baseline model within this

chapter.

hturn
i = Encturn(ti) for i = 1, ..., |D| (5.1)

hint = Encint({hturn1 , ..., hturn|D| }) (5.2)

5.2.2 External Knowledge Integration

In our effort to reintroduce domain expertise into depression estimation tasks, we

incorporate psychiatrist annotations into the learning process of our neural network

model. The proposed research is aligned with the approach taken by Soares et al. [83]

and Boualili et al. [14], and introduce special markers into the input text to directly

highlight clinical annotations within the transcripts. The underlying idea is that

explicitly marking spans in the input text may allow the model to carefully identify

the annotations and make a more informed prediction. Consequently, all annotations

provided by the psychiatrists are encompassed in between the @@ markers within

the transcripts, giving rise to a marked-up corpus (example in figure 5.3). We use

the Baseline architecture defined earlier and fine-tune it using the marked-up corpus.

Specifically, the pre-trained all-mpnet-base model is fine-tuned by unfreezing only the

final layer. The resulting model is referred to as the Marked-up model within this

chapter.
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Model
MAE

Dev. Test

SOTA

ASP MT. DLC+DLR+EIR [68] 3.69
HCAG-T [59] 3.73 -
SGNN [43] 3.76 -
Symptom prediction [56] 3.61 3.78
Dual encoder (warm start) [51] 2.76 3.80

Our Configurations

Baseline model 4.08 3.52
Marked-up model 3.49 3.60

Table 5.2: Comparison of overall model performance against current state-of-the-art
results. The results are averaged over 5 random initializations.

5.3 Results and Analysis

Table 5.2 provides overall results for the various model configurations considered in

the experiments and puts them into perspective by comparing them against current

state-of-the-art results. All these works have used only text modality as input, as

is the case in our research. Our models outperform all previous research initiatives,

with Baseline model providing new state-of-the-art performance on the test set of

the DAIC-WOZ on an average taken over 5 runs. It is interesting to notice that the

marked-up model does not improve over the baseline model despite containing extra

information, although it outperforms all previous research initiatives. This issue is

further discussed in detail in §5.5.

Ablation study: Although clinical annotations highlight important information

within the transcript, they do not represent exhaustive knowledge sufficient to gauge

a patient’s mental health. Given the complete set of information required for esti-

mating depression, we seek to understand the role played by our clinical annotations

within this set. As such, we conduct an ablation study to analyze the amount of infor-

mation contained within the annotations by removing parts of interview transcripts

and analyzing the change in model performance. Two new input configurations are

defined and used with a trained instance of Baseline model at the inference stage to

generate new predictions over the modified inputs. An instance of Baseline model

trained on complete interview transcripts is used within the experiments without any

further training or fine-tuning to account for modified input configurations. The two

input versions in this ablation study are defined as follows:
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Ablation configurations MAE on Test set

Baseline model 3.52
Baselineann. inference 4.02
Baselinenon-ann. inference 3.84

Table 5.3: Ablation study with baseline model for exclusively non-annotated and
annotated sentences.

Baselineann inference: Within this input configuration only question-answer

pairs with at least one annotation are retained within the transcripts and the re-

maining information is discarded.

Baselinenon−ann inference: Only question-answer pairs without any annota-

tion are retained within the input transcripts in this input configuration.

Results of the ablation study are shown in table 5.3. As expected, there is a drop

in model performance when parts of the interview are removed, thus verifying the

importance of both annotated and non-annotated parts of the transcripts toward

final predictions. We see a significant drop in performance on removing annotated

question-answer pairs from the input transcripts (Baselinenon−ann model), high-

lighting the validity of the psychiatrists’ annotations. Surprisingly, we also see a

drop in performance when only annotated questions-answer pairs are used as inputs

(Baselineann model). This behaviour can be attributed to the fact that in this con-

figuration the number of sentences within the interviews is severely reduced and as

such the coherence of the discourse is undermined, affecting the performance of the

automated models. This shows that although psychiatrists’ annotations represent

informative parts of the transcript, this knowledge is not disjoint from the remaining

discourse.

5.4 Attention and Annotated Spans

Psychiatrist annotations highlight text spans that hold relevance for depression esti-

mation as per clinicians’ knowledge and medical guidelines. Given their importance

from the medical point of view, we propose to verify whether automated models

attend to the same annotated text spans or look for information that complements

clinical knowledge. Psychiatrist annotations are analyzed against sentence-level at-

tention scores from the model, sentence being the atomic textual element for this

analysis. In particular, we focus on 3 different sentence types: questions (Q), non-

annotated turns (N) that contain answers without any annotations, and clinically-
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Class Metric Q N A

Non-depressed

min. 12.84 12.93 13.60
max. 137.50 136.76 135.35
med. 42.03 42.10 42.25
avg. 30.85 31.01 31.25

Depressed

min. 15.29 15.02 15.37
max. 103.88 102.83 110.89
med. 37.96 38.50 38.82
avg. 12.18 12.18 12.29

Table 5.4: Sentence-level attention scores calculated over the DAIC-WOZ dataset
for Questions, Non-annotated and Annotated turns. Values are with the precision
of 10−4. Med. and avg. stand for median and arithmetic mean.

annotated turns (A) that contain patient responses with at least one annotation.

Thus, each attention head Hs×s of the interview encoder Encint is converted into

three attention sub-matrices Hs×q, Hs×n and Hs×a, where s is the number of sen-

tences in a given transcript, q the number of questions, a the number of annotated

turns and n the number of non-annotated turns, such that s = q + n + a. For each

interview, we average the sentence-level attention scores for Q, N , and A sentence

types for all attention heads contained in the interview encoder as defined in equation

5.3, where h and l stand for the number of heads and layers respectively.

X =
1

l.h

∑
l,h

1

i.j

∑
i,j

Hs×x
i,j , ∀x ∈ {q, n, a} (5.3)

Finally, we average these values over the 189 interviews of the DAIC-WOZ to get the

overall picture. Results with the baseline model are given in table 5.4 and show that

the transformer-based model focuses more on clinically annotated spans compared

to other parts of the transcripts, independently of the patient class. This provides

the first evidence that the baseline model targets clinically motivated spans for its

decision process without the introduction of any external knowledge or use of specific

architectures tuned towards guiding the attention values.

To complement this analysis, figure 5.4 plots the three attention heatmaps Q,

A and N with brighter regions representing higher attention scores. Plots are pro-

vided for a depressed patient as well as a non-depressed patient. This illustration

exemplifies overall results and shows that although model attention is distributed

over all three categories, clinically-annotated turns receive higher average attention

as compared to non-annotated turns and questions. Finally, figure 5.5 illustrates

the attention scores in the perspective of the psychiatrists’ annotations for the same

patients. Following the blue line corresponding to the baseline model, we observe
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(a) Patient id: 335 (PHQ-8 = 12). Average attention scores (Q, A, N) = (1.994e-05, 2.030e-05, 1.966e-05)

(b) Patient id: 307 (PHQ-8 = 0). Average attention scores (Q, A, N) = (1.955e-05, 2.044e-05, 1.905e-05)

Figure 5.4: Sentence level attention scores from the Baseline model for two different
patients.

(a) Patient id 335, PHQ-8 score 12 (b) Patient id 307, PHQ-8 score 0

Figure 5.5: Attention scores from baseline and marked-up models plotted against
clinical annotations for patients belonging to two classes.

an increase in attention scores in the vicinity of psychiatrist annotations, while the

opposite is true in the absence of annotations. These plots represent a general trend

observed throughout the dataset with some exceptions.

Detailed analysis of the attention scores over the entire dataset revealed a gen-

eral trend in line with the above findings showing increased attention scores for the

Baseline model in the neighborhood of clinically annotated sentences. Figure 5.6
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(a) Patient id: 307, PHQ-8 score=0 (b) Patient id: 340, PHQ-8 score=1

(c) Patient id:336, PHQ-8 score=7 (d) Patient id:410, PHQ-8 score=12

(e) Patient id:362, PHQ-8 score=20 (f) Patient id:311, PHQ-8 score=21

Figure 5.6: Sentence-level attention scores for the Baseline and Marked-up models,
with psychiatrist annotations.

illustrates sentence attention scores from automated models for multiple transcripts

within the dataset for the depressed and non-depressed classes. We also include

exceptions that deviate from this global pattern (figure 5.6f and figure 5.6b), with

low attention values around annotations in some regions. With respect to atten-

tion scores for the marked-up model, we steadily notice a peak in values halfway

through the transcripts, with lower attention scores before and after the climb. Fig-

ure 5.6d represents one rare exception to this rule with high attention at the start

and above-average attention scores in regions without annotations. We further plot
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the heatmaps in figure 5.7 for some of the same examples, with figure 5.7e verifying

exceptional behavior (patient id:311) showing low average attention values towards

annotated sentences, although evidencing a highly concentrated attention zone at

the end of the plot.

Within the literature, researchers have argued that since the aim is to evaluate

patients’ mental health, only patients’ inputs should be used during the decision-

making process [55, 20]. This belief is further reinforced by the fact that our an-

notators did not annotate any of the questions asked by the psychiatrist within the

DAIC-WOZ dataset. It is observed that medical professionals tend to focus only on

patient utterances within the interview, while previous research [92] and our exper-

iments (chapter 3) have shown that in the context of neural networks both patient

and therapist inputs play an important role. This extends from the fact that models

require questions in order to contextualize information within the answers. Fig-

ures in table 5.4 support this analysis with questions receiving significant attention

scores validating their importance in the decision-making process. Although medical

professionals focus more on patient responses, which is in line with neural network

behavior (on average answers received more attention compared to questions in table

5.4), they also process questions, albeit subconsciously.

5.5 Performance Analysis and Knowledge Introduction

Although the baseline model attends to parts of the interviews that psychiatrists find

relevant, we explore the impact of the introduction of clinician expertise directly in

the learning process and analyze the performance of the marked-up model. Overall

results are illustrated in table 5.5 and do not evidence gains in performance result-

ing from the knowledge added by the psychiatrist annotations. Indeed, the baseline

model outperforms the marked-up model 5 times out of 8 for both the depressed and

non-depressed classes. This confirms our previous findings from section §5.4, showing

that the baseline architecture already attends to clinically annotated sentences, thus

reducing the impact of the marked-up strategy. Figure 5.5 compares both baseline

and marked-up models, with plots showing similar behaviors of attending to the an-

notated sentences although with different amplitude. In particular, the marked-up

model tends to pay high attention to the middle of the transcripts thus failing to

highlight important information from other regions. This is not the case for the

baseline model, which has more evenly distributed attention values, while still being

consistent with psychiatrist annotations.
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(a) Patient id: 340 (PHQ-8=1). Average attention scores (Q, A, N) = (3.536e-05, 3.528e-05, 3.535e-05)

(b) Patient id: 336 (PHQ-8=7). Average attention scores (Q, A, N) = (2.221e-05, 2.320e-05, 2.215e-05)

(c) Patient id: 410 (PHQ-8=12). Average attention scores (Q, A, N) = (1.995e-05, 1.967e-05, 1.991e-05)

(d) Patient id: 362 (PHQ-8=20). Average attention scores (Q, A, N) = (4.085e-05, 4.302e-05, 4.187e-05)

(e) Patient id: 311 (PHQ-8=21). Average attention scores (Q, A, N) = (2.383e-05, 2.320e-05, 2.385e-05)

Figure 5.7: Heatmaps of the sentence-level attention scores for three different exam-
ples calculated on Baseline model.
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Symptoms
Psychiatrist Pred. Baseline model Marked-up model
Depr. Non-Depr. Depr. Non-Depr. Depr. Non-Depr.

Loss of interest 0.615 0.366 0.611 0.431 0.699 0.485
Feeling of depression 0.571 0.696 0.884 0.443 0.939 0.465
Sleeping habits 0.615 0.533 0.761 0.691 0.651 0.808
Tiredness 0.727 0.689 0.797 0.711 0.812 0.666
Feeling of failure 1.083 0.800 0.820 0.543 0.786 0.573

Lack of concentration - - 1.332 0.521 1.361 0.475
Loss of appetite - - 0.932 0.745 1.037 0.628
Lack of movement - - 1.008 0.105 0.964 0.125

Table 5.5: MAE calculated against patient’s self-assessment scores by symptoms over
the DAIC-WOZ test set. Results are averaged over 5 runs for the automated models.
Psychiatrist prediction evidences the difference between the patients’ assessments and
the psychiatrists’ ones.

Symptoms
Depr. Non-Depr.

Over Under Over Under

Psychiatrist Prediction

Loss of Interest 1 5 3 6
Feeling of depression 3 3 16 2
Sleeping habits 3 3 10 2
Tiredness 2 3 12 5
Feeling of failure 1 8 13 5

Baseline Model

Loss of Interest 4 9 24 5
Feeling of depression 2 12 24 9
Sleeping habits 1 12 19 10
Tiredness 1 10 14 14
Feeling of failure 1 11 20 9

Marked-up model

Loss of Interest 4 9 27 3
Feeling of depression 3 11 26 7
Sleeping habits 1 12 19 11
Tiredness 1 10 15 14
Feeling of failure 2 10 23 7

Table 5.6: Number of over- and under-evaluated transcripts in the test set for the
baseline model, the marked-up model, and the psychiatrists’ scorings.

In order to put prediction results into perspective further, we calculate the Mean

Absolute Error (MAE) between the psychiatrist’s PHQ-8 scores and patients’ self-

assessments. Results in table 5.5, calculated by taking self-assessment as ground

truth, show that Psychiatrist Predictions outperform automated models for most

of the symptoms (feeling of failure and loss of interest being exceptions). Further

analysis of psychiatrist scoring confirms findings from the medical domain [27], show-
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(a) Depressed class (b) Non-Depressed class

Figure 5.8: Radar plots showing symptom-wise average scores for the different au-
tomated models, the patient self-assessments, and the psychiatrists’ ratings over the
test set of the DAIC-WOZ. Note that only 5 symptoms are illustrated, which refer
to the ones that psychiatrists could reliably annotate.

ing that clinicians tend to under-evaluate the PHQ-8 scores for the depressed class

while over-evaluating those for the non-depressed class. Intriguingly, we observe the

same behavior for the automated models as illustrated in table 5.6. The figures indi-

cate that both the Baseline Model and the Marked-up Model demonstrate behavior

similar to that of psychiatrists. This observation further bolsters our claim regard-

ing shared psychological tendencies between our proposed model and psychiatrists.

As expected, the number of transcripts misdiagnosed by the automated models far

exceeds those misdiagnosed by psychiatrists. This is due to the fact that models

generate floating point predictions whereas psychiatrists’ predictions are based on a

Likert scale ranging from 0 to 3.

To further analyze the behavior of over and under-evaluation, we plot the symptom-

wise average scores for the different automated models, the patient self-assessments,

and the psychiatrists’ ratings in figure 5.8. The illustrations show a high correlation

between the results from the two automated models. Both the Baseline Model and

Marked-up Model generate the same average scores for the depressed class while for

the non-depressed class, the values are very close. This confirms that introduction

of annotations into the learning process through markup strategy does not provide

significant performance gain. These plots also support the claims of over and under-

evaluation of PHQ-8 scores, and showcase a similar pattern as seen in table 5.6.
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5.6 Conclusion

In this part of the thesis, we examine automated depression estimation through the

prism of psychiatric expertise and compare the behavior of automated models against

clinical annotators. The aim of this work has been twofold: (1) generate clinical an-

notations for the DAIC-WOZ dataset to encourage multi-disciplinary research in the

field, and (2) analyze and compare neural network behavior against that of psychia-

trists to validate their reliability as predictive models within the clinical setting.

The limited availability of medical experts has a significant impact on multi-

disciplinary research in the field of automated depression estimation, with most re-

searchers treating this as a purely computational task. Through this research we

provide clinical annotations of the DAIC-WOZ dataset, encouraging researchers to

incorporate domain knowledge within their research. Annotations within our en-

deavor were carried out with the help of trained medical professionals with expertise

in mental health assessment, ensuring their reliability and correctness. Our choice of

annotators sets us apart from previous annotation attempts [4] where crowd-workers

without medical knowledge were employed as annotators. Our confidence in these

annotations is based on the academic background and extensive training of our an-

notators in the field of mental health assessment. Initial analysis of our annotations

highlighted discrepancies between the information contained within the transcripts

and the self-assessment PHQ-8 based ground-truth associated with the problem. Our

study shows the lack of symptom-level information within interview transcripts, high-

lighting the fact that for neural network models trained on the DAIC-WOZ dataset,

the ground-truth (PHQ-8 scores) is defined outside the context of the model input

(interview transcripts). This leads to unreasonable learning goals for models trained

only on transcribed interview data.

Our studies show a strong correlation between psychiatrist annotations and the

decision-making process of the proposed neural network architecture. Analysis of

the sentence level attention scores from the neural network shows that Baseline

model learns to analyze the interview transcripts in ways similar to a psychiatrist

despite the lack of any medical knowledge in the input. A global trend of increased

attention values around annotated sentences was observed indicating that our model

bases its prediction on the same information sought after by the medical professionals

(figure 5.5). However, despite their importance, basing the final prediction solely on

psychiatrist annotations can be counter-productive (table 5.3). This indicates the

importance of retaining non-annotated sentences within model input, especially to
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maintain the coherence of the discourse.

Our annotations further quantify the discrepancy between patients’ mental health

assessments based on clinical evaluations and self-assessment scores (table 5.5). More-

over, we also establish a strong correlation between the psychological tendencies of

the medical professionals and those of our neural network model in the context of pre-

dicting the final PHQ-8 scores. Taking patient’s self-assessment as the ground-truth,

both the neural network and medical professionals share an inclination to underesti-

mate the scores for people suffering from depression, while overestimating the scores

for patients without depression (figure 5.6). This further supports the reliability of

our model and validates their role as predictive models for clinicians in psychiatry.

Finally, the proposed architectures are compared against recent research initiatives,

with Baseline model providing new state-of-the-art results over the DAIC-WOZ test

set (table 5.2).
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Depression is a serious mental disorder affecting millions of people worldwide, encor-

ing huge social and financial losses. The severity and widespread impact of depression

has prompted significant research initiatives in the field of automated depression esti-

mation in an attempt to alleviate the pressure on the healthcare systems and extend

the reach of such services. Within this context, researchers have exploited different

neural network architectures and models to define systems for automated depression

estimation. This dissertation discussed the need for automated depression estima-

tion and presented recent initiatives in the field. Despite the extensive literature,

some research directions have been overlooked in the context of ADD research based

on clinical interviews. Three major research questions were raised within this the-

sis that are missing from the current literature on automated depression detection.

This dissertation emphasizes the importance of answering these research gaps and

showcases the advantages of exploring these research directions both in terms of im-

proving the predictive performance of the models and providing explainability and

useful insights for medical professionals. The remainder of this chapter concludes

the individual research discussed in the preceding chapters and provides an overlook

of the possible future research directions.

The first important question raised within this thesis concerns the relevance of

discourse structure while processing dyadic patient-therapist interviews. The argu-

ment is based on the fact that the dyadic nature of the conversation implies an

inherent structure within the discourse. Chapter 3 presents the models and exper-

iments defined in the context of answering this question. Firstly, the relevance of
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therapist’s questions is established in the context of DAIC-WOZ dataset by veri-

fying the presence of relevant information in the questions asked by the therapist

during the interview. This raises further questions regarding the ideal method for

combining the two input streams, therapist’s questions and patient’s answers, with

the sequential combination proving to be sub-optimal even compared to using the

patient’s input alone (chapter 3, table 3.1). Multi-view architectures are defined that

divide the input into two views, the patient view and the therapist view, and process

them both independently and co-dependently as a possible way of incorporating the

discourse structure into the learning process of the models. The proposed architec-

ture not only allows the model to handle the discourse structure and symmetry but

also reduces the number of noisy interactions encountered during the training process

for more efficient learning, resulting in a significantly higher predictive performance.

Furthermore, ablation studies were conducted in order to understand the importance

of different interactions within the discourse with MV-Inter-Att. (Mean) configura-

tion out-performing the corresponding sequential baseline configuration (Hierarchical

Baseline (Patient+Therapist)) by 13.84% on macro F1 evaluation metric. Further-

more, MV-Inter-Att. (Mean) also outperformed all other multi-view based configu-

rations validating the need to account for both interactions within the two views and

the interactions between the corresponding questions and answers. Finally, experi-

ments were conducted with two different text encoding methodologies, hierarchical

text encoding, and Sentence Transformer based text encoding, to further strengthen

the need for incorporating the discourse structure in the learning process, and the

validity of Multi-view architectures.

The second question relates to the role played by the input representation in the

learning ability and interpretability of the neural network models. The research in

this direction is outlined in chapter 4, which suggests utilizing graph-based represen-

tations of the input transcripts. This stems from the necessity of integrating discourse

structure into the learning process, and employs Sentence Similarity Graphs (SSG)

representations to embed the said structure directly into the input representation.

Furthermore, it is argued that graphs are not only a more suitable data structure

for representing the non-linear interactions inherent in conversations, but different

graph definitions can highlight different relevant aspects of the same input, which

might not be possible with sequential encodings. Sentence Similarity Graph and

Keyword Correlation Graphs [19] (KCG) structures are explored within this con-

text, respectively encoding local transcript level information and global corpus level

knowledge into individual transcript representations to study the impact of different
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input representations on the model’s performance. Experimental results presented in

chapter 4 validate the advantages of using graph-based input representations for im-

proving the predictive abilities of the models, with SSG based input representations

out-performing the corresponding sequential and KCG based representations (table

4.2). Furthermore, the multi-view concept was also applied to the graph structures in

order to highlight the difference in perspective between the patient and the therapist.

Experimental results verify the model-agnostic nature of the multi-view concept with

multi-view based configurations out-performing the corresponding baselines across

all input representations considered. This further shows that view based division

of the input, proposed in the multi-view architecture, not only encodes discourse

structure but also highlights the difference in perspective between the patient and

the therapist. This is more evident in the case of multi-view based KCG representa-

tions where the individual topic models perfectly encode the difference in perspective

with the therapist’s topic models representing the relevant aspects of the patient’s

life discussed during the interview, while the patient’s emotions and feelings towards

these aspects are encoded in the patient topic model. It is shown that visualization

of these graph structures can provide further insights into the mental health of the

patient. Within this context, KCG visualizations are used to show that therapist

behavior also changes in response to the patient’s mental status, with visualization

of therapist sentence similarity graphs providing a visual representation of therapist

behavior during the interview. It is further shown how the key terms within the

transcript change with respect to the mental health status of the patient, with terms

like “depressed” and “therapy” only appearing in the graphs of depressed patients.

Finally, the model performance was also compared against recent state-of-the-art

results with the graph based models out-performing all recent initiatives and giving

new state-of-the-art performance for the binary classification task within the ADD

domain.

The final question pertains to the involvement of medical professionals within the

learning process of neural network architectures and their trustworthiness as predic-

tive models within the healthcare setting. Chapter 5 emphasizes the importance

of incorporating domain expertise into the learning process of the neural network

models, and provides clinical annotations of the DAIC-WOZ dataset in an attempt

to encourage multi-disciplinary research into the ADD field. Firstly, clinical anno-

tation of the DAIC-WOZ dataset was carried out to not only highlight medically

relevant information within the individual transcripts but also to obtain a medical

diagnosis of the participants involved. The clinical annotations open the possibility

91



CHAPTER 6. CONCLUSION AND FUTURE WORK

to incorporate medical knowledge into the neural network’s learning process and ac-

count for the lack of domain expertise, not only within the research discussed in this

dissertation but clinical interview based automated depression estimation in general.

These annotations are also used as context to analogize the predictive tendencies

of neural network models and mental health professionals. Initial analysis of the

annotations confirm that medical professionals tend to focus more on patient’s re-

sponses rather than their questions (which they likely process sub-consciously) with

almost all annotations appearing in patient responses, while the AI models consider

both patient and therapist inputs in their predictive process. Furthermore, they also

point towards a lack of information within the transcripts for reliable evaluation of

all PHQ-8 indicators with most transcripts lacking information on at least 3 out of

8 symptoms (refer figure 5.1).

Sentence level attention analysis of the proposed Baseline Model (model trained

without clinical annotations) reveals a strong correlation between psychiatric anno-

tations and the decision-making process of the neural network architecture. Notably,

there is an observed trend of increased attention scores corresponding to an increased

number of annotations in the region (examples in figure 5.5). Although network at-

tention is distributed over a wider region in contrast to clinical annotations that

highlight specific sentences, the general trend supports the argument that both au-

tomated models and medical professionals attend to the same information in the

transcript, indicating similarities in their decision-making process.

Psychiatric evaluations were also compared against the patient’s self-assessment

scores, confirming the well-documented discrepancy between medical evaluation and

self-assessment of mental health. Assuming self-assessment to be the ground truth,

which is the standard practice in the field, symptom level predictions of the Base-

line Model (defined in chapter 5) follow the same pattern as medical evaluations.

In general, the Baseline model over-evaluated the non-depressed individuals while

under-evaluating the scores for depressed patients, a well-documented behavior of

medical professionals which is also observed in the clinical annotations collected as

part of this work. Although this work does not provide any explanation of the

decision-making process of the proposed neural network models, the overall analysis

shows shared psychological tendencies between medical professionals, and the neural

network, supporting their use as reliable and trustworthy predictive tools within the

healthcare setting. The models proposed in chapter 5 were also compared against rel-

evant initiatives within recent literature with the proposed Baseline model providing

new state-of-the-art results over the test set of DAIC-WOZ dataset.
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6.2 Future Work

Although the models and architectures proposed in this dissertation meet the cur-

rent expectations and provide improvements in predictive performance over the re-

cent initiatives in the field, they represent initial steps towards the proposed research

directions with a great deal of unexplored possibilities. Research in two major di-

rections is currently underway with plans to explore other possibilities in the near

future.

The first set of experiments are focused on the multi-view based KCG represen-

tations of input transcripts. Efforts are being made to exploit linguistic knowledge

to further fine-tune the KCG structure for a better representation of individual per-

spectives of the two interlocutors, the patient and the therapist, within clinical inter-

views. The current research revolves around studying the impact of Part Of Speech

(POS) tags on the training of topic models within the KCG definition. The aim is

to learn more customized view representations, eventually leading to more complex

graph definitions allowing a more detailed study of interactions between the individ-

ual perspectives, and providing valuable insights and clues not only in the context

of the model’s predictive process but also the patient’s mental health. Working in

this direction, experiments are being run that combine SSG and KCG structures to

define a multi-level graph representation incorporating both local and corpus level

knowledge. Furthermore, we plan to expand the multi-view concept and define the

two views as different representations of the input transcript in place of agent-based

splitting of the patient-therapist interview. We plan to use SSG and KCG structures

to experiment with this updated definition of multi-view architectures.

The second research direction currently being explored is the incorporation of

medical knowledge into the learning process of proposed neural network models.

Although the initial experiments in this direction did not evidence promising results

(table 5.5), different ways of incorporating external knowledge into the model are

being explored. In particular, the current experiments are based on the findings of

Deshpande et al. [23] and explore the use of clinical annotations within the guided

attention mechanism for improved results.
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Acronyms

ADD Automated Depression Detection.

BERT Bidirectional Encoder Representations from Transformers [26].

DAIC-WOZ Distress Analysis Interview Corpus - Wizard of Oz [38].

ELMo Embeddings from Language Models [65].

GAT Graph Attention Network [87].

GCN Graph Convolution Network [47].

GloVe Global Vectors [64].

GNN Graph Neural Network.

GPC General Psychotherapy Corpus.

GRU Gated Recurrent Unit.

HCAG Hierarchical Context-Aware Model [59].

KCG Keyword Correlation Graphs [19].

LLM Large Language Models.

MDD Major Depressive Disorder.

MLP Multi Layer Perceptron.

NLP Natural Language Processing.
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Acronyms

NMF Non-negative Matrix Factorization [33].

PHQ-8 Patient Health Questionnaire-8.

PTSD Post-Traumatic Stress Disorder.

QA-pair Question-Answer Pair.

RNN Recurrent Neural Network.

SGNN Schema-Based Graph Neural Network.

SSG Sentence Similarity Graphs.
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Automated Depression Level Estimation:

A Study on Discourse Structure, Input Representation

and Clinical Reliability

Keywords: Automated depression estimation, Discourse structure, Graph-based

input representation, Multi-view architectures, Clinical annotations

Résumé: La recherche discutée dans cette thèse vise à répondre à trois questions

majeures dans le domaine de l’estimation automatisée de la dépression ; (1) le rôle de

la structure du discours dans la compréhension de la santé mentale, (2) la pertinence

de la représentation de l’entrée, et (3) l’importance de la connaissance médicale dans

l’analyse automatisée de la santé mentale. Ceci constitue la base de ma recherche

sur les architectures multi-vues pour encoder la structure du discours des entretiens

dyadiques patient-thérapeute. Les représentations graphiques des transcriptions sont

également explorées pour modéliser les interactions non linéaires au sein des conver-

sations dyadiques et la génération d’idées. Nous intégrons en outre le concept de vues

multiples dans ces structures graphiques, l’établissant comme une méthodologie ag-

nostique du modèle. Nous examinons également le comportement de notre modèle

dans le cadre des annotations cliniques afin d’établir des parallèles avec leurs ten-

dances prédictives, améliorant ainsi la fiabilité des modèles de réseaux neuronaux en

tant qu’outils prédictifs dans les systèmes de soins de santé.

Abstract: The research discussed within this thesis aims to answer three major

questions in the domain of automated depression estimation; (1) the role of discourse

structure in mental health understanding, (2) the relevance of input representation,

and (3) the importance of medical knowledge in automated mental health analysis.

This forms the basis for my research on multi-view architectures for encoding the

discourse structure of dyadic patient-therapist interviews. Graph-based transcript

representations are also explored for modeling non-linear interactions within dyadic

conversations along with insight generation. We further incorporate the multi-view

concept within these graph structures, establishing it as a model-agnostic methodol-

ogy. We also examine our model’s behavior within the framework of clinical annota-

tions to draw parallels with their predictive tendencies, thus enhancing the reliability

of neural network models as predictive tools in healthcare systems.
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