
Search Intent Mining by Word Vectors Clustering at
NTCIR-IMine

Jose G. Moreno
LIMSI, CNRS,

Université Paris-Saclay,
F-91405 Orsay

moreno@limsi.fr

Gaël Dias
GREYC, CNRS,

Université Caen Normandie,
F-14032 Caen

gael.dias@unicaen.fr

ABSTRACT
This paper presents a method for intent mining based on se-
mantic vectors and search results clustering. Our algorithm
represents words as documents and performs a state-of-the-
art approach for query log driven clustering. Similarities
between query logs and words are calculated with semantic
vectors. Based on manual selection of vertical representa-
tives, our method is able to correctly identify intents and
to classify them into vertical classes. Results in the Query
Understanding of the iMine2@NTCIR subtask show that
our unique run submission outperforms other participants
in terms of D−nDCG@10 and achieves the second position
in the general team raking.

Team Name
HULTECH

Subtasks
Query Understanding Subtask (English)

Keywords
Query log driven clustering, intent mining, semantic vectors

1. INTRODUCTION
Correctly identifying the intent of users when they use a

search engine is a challenging task. Nowadays, users not
only expect high quality results but also adequate classifi-
cations in vertical interfaces. Vertical interfaces allow the
visualization of results in different contexts. Let’s consider
a user issuing the query “star wars”. The user could be
searching for different topics about star wars. One intent
could be “star wars the force awakens”, which is clearly re-
lated to the movie released on December 2015 and the user
might be interested in buying some product associated with
the movie e.g. a streaming service. Another intent might
be “star wars rogue one”, the new sequel movie. In this
case, the user could be interested in news1 about this topic.
Understanding these users’ expectations is a great issue for
major commercial search engines.

This paper presents our participation in the iMine2 Search
Intent Mining subtask at NTCIR. It is our third participa-
tion in the NTCIR tasks related to intent identification. In
previous years [9, 2], we proposed two different solutions:

1At the moment of writing this paper the movie was not
released yet.

(1) a modified version of the classical k-means algorithm to
identify intents through the clustering of search results [4]
and (2) a semantic vector-based strategy, which makes use
of arithmetic operations to identify the user intents [5]. This
year, the organizers included the vertical classification task
in order to reinforce the intent mining subtask. In short, the
subtask consists in providing a two-level set of intents that
better match the users’ search with a vertical class for the
lower level. The topical level is limited to 10 second-level in-
tents and 4 first-level intents, and the vertical level includes
6 specifications. However, less intents could be provided.
Full description of the task can be found in [10].

In order to continue with our research on clustering for in-
tent mining, we explore the integration of semantic vectors
into Dual C-means [8], a generalization of an algorithm pro-
posed in [7] that has shown good performance in the previous
editions of this task [4]. Semantic vectors are built based on
recurrent neural networks to efficiently represent words as
continuous vectors keeping interesting syntactic and seman-
tic information. This technique has proved to improve over
most of state-of-the-art results in many natural language
processing tasks. In our previous participation, we used col-
location measures that were calculated over a set of Web
results. This year, we propose a drastic simplification of our
algorithm by the integration of semantic vectors.

The remainder of this paper includes a description of our
intent identification algorithm in Section 2. The vertical
identification strategy is presented in Section 3. The exper-
imental results and discussions are presented in Sections 4
and 5. Finally, conclusions are presented in Section 6.

2. INTENT IDENTIFICATION
Our method is based on semantic representation of words

within the Dual C-means (DCM) algorithm [8]. DCM is an
iterative search results clustering (SRC) method that allows
to cluster documents and simultaneously select the appropri-
ate label from a set of candidates. At each step, DCM first
calculates the similarity between labels (here, query logs)
and documents to assign documents to clusters. Then, a
label is selected from a list of candidates for each cluster.
The algorithm iterates until convergence is achieved.

Here, instead of clustering web search results, we propose
to cluster words contained in query logs. Words are used
as documents and query logs as centroid candidates. Sim-
ilarities between the words and query logs are obtained by
calculating the cosine similarity of the respective semantic
vectors. These semantic vectors are dense vectors, which
encode the semantic information obtained from a corpus.

2.1 Semantic Vectors
Many recent works in Natural Language Processing (NLP)

and Information Retrieval (IR) have been focusing on se-
mantic vectors also known as word embeddings. A basic
technique to calculate semantic vectors was based on sin-
gular value decomposition, but a new neural network-based
strategy has attracted a lot of attention [3]. These vectors
allow to encapsulate semantic and syntactic information in
a 3002 dimension vectors. The code to calculate these vec-
tors is publicly accessible and it has also been implemented
in many different libraries3 and frameworks4. In this paper,
we are not interested in developing adapted vectors, but in
the use of them. For that reason, we used the pre-calculated
vectors of [3].

2.2 Matrix-based Representation
Our modified version of DCM uses a matrix containing the

similarities between each label candidate (any query log) and
the words contained by all the candidates (full vocabulary,
i.e. all words contained in query logs). Let Q be the set of
query logs candidates to the query q. Mq is nxm the matrix
that contains the semantic similarity between each qi intent
in Q and the full vocabulary extracted from Q. Note that
n = |Q| and m corresponds to all the words found in Q. The
Mq

ij value corresponds to the cosine similarity calculated
between the semantic vector of the qi intent and the word
wj . Note that the semantic vector of a query log, which
may contain different words is calculated as the average of
the semantic vectors of its components.

2.3 Matrix-based Dual C-means
As input, DCM receives the Mq matrix, a k number of

clusters and a maximum number of iterations. Figure 1
shows the python code for DCM. First, an initialization step
is performed to identify the top-k relevant label candidates
(lines 2 − 3). Then, the iterative process is started. Each
word is assigned to the label with maximum similarity (line
5) (i.e. assignment step). Then, for each cluster, the maxi-
mum label is assigned (lines 6−11) (i.e. update step). These
steps are performed a predefined number of maximum iter-
ations itermax. As output, the DCM algorithm provides the
labels that represent each cluster. To ensure that k cluster
are provided, some candidates are added in cases when a
number of k labels are selected in the iterative process (lines
12− 16).

3. VERTICAL IDENTIFICATION
Similarly to the topical intent identification, semantic vec-

tors are used to automatically assign the vertical class to
each selected intent. Our method is based on a small set
of handcrafted words to represent the concept expressed by
each vertical class. The size of each set variates between 2
and 4 words. Table 1 shows the set of words for each vertical
class. So, each label cluster is mapped to the semantic space
and the average vector is calcualted. The same is done for
each vertical intent and the cosine similarity is used to com-
pute similarity between both semantic vectors. The vertical
class with highest cosine value is assigned to the intent.

2This value is a parameter.
3Gensim: https://radimrehurek.com/gensim/
4Tensorflow: http://www.tensorflow.org

1 def dcm(mq,k,iter max):
2 init = numpy.sum(mq,1)
3 ind i = init.argsort()[−k:][::−1]
4 for i in range(iter max):
5 pi d = mq[ind i,:].argmax(axis=0)
6 ind i = []
7 for id pi d in numpy.unique(pi d):
8 partit = numpy.where(pi d == id pi d)[0]
9 sum partit = numpy.sum(mq[:,partit],1)

10 ind i.append(sum partit.argsort()[−1:][::−1][0])
11 ind i = [x for x in iter(set(ind i))]
12 for e in init.argsort()[−k:][::−1]:
13 if len(ind i)>=k:
14 break
15 elif not e in ind i:
16 ind i.append(e)
17 return ind i

Figure 1: Python code of our matrix-based Dual C-means
algorithm.

Vertical class Words
Web web, internet, online

Image image, picture
News news, event
QA qa, question, how, what

Encyclopedia encyclopedia, wikipedia, facts
Shopping shopping, mall

Table 1: Words to represent vertical intents.

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup
A total of 100 query strings were used for evaluation.

In the final results, only 98 queries were considered5. For
each of these queries, the system must provide a list of a
maximum of four first-level intents with a maximum of ten
second-level intents each one associated to exactly one in-
tent of the first level. All discovered second-level intents
were manually classified into relevant or not, as well as their
relevance with their respective first-level intent. For evalua-
tion, independent metrics such as I−rec@10, D−nDCG@10
and V −score, and their combination into D#−nDCG@10
and QU − score were used. Finally, the QU − score value is
used to compare the evaluated systems. A full description
of the evaluation metrics and the used dataset can be found
in [10]. A total of three teams participated in the task with
10 runs. Our team submitted only one run.

4.2 Results
In order to access the results, we present an analysis of

the independent metrics. For each metric, we classified the
results into four equally distributed groups sorted by the re-
spective results of all participants. This allows us to split
the results into four different levels of difficulty (hardest,
middle-hard, middle-easy and easiest). Results are showed
in Figures 2, 3 and 4 where each point represents the ac-
cumulative performance starting from the easiest query to
the hardest on average for each group. This accumulative
result allows to draw some conclusions about the evolution

5For major details, check [10].

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 2: I − rec@10 results for the submitted runs. From left to right and top to bottom, the hardest to the easiest queries.

of each algorithm into each group of queries. Note that the
order within the group to discriminate between each query
is determined by the average between all the runs.

In the case of I− rec@10, our algorithm performs well for
the hardest group and all the algorithms perform similarly
for the easiest group excluding the rucir-Q-E-3Q, which ob-
tains significantly lower results in the three groups. Indeed,
the performance of this run does not improve when the task
becomes easier.

Regarding the D−nDCG@10 metric, the results are quite
different. For the hardest group, we can distinguish five
groups of curves with similar results with our run in the
top, which is clearly superior to the runs of all the other
participants and again the rucir-Q-E-3Q run in the bot-
tom. It is clear that runs from the same participant tend
to behave similarly. For the middle hard many of the runs
manage to get the top performance, but KDEIM-Q-E-4S,
rucir-Q-E-2Q and rucir-Q-E-4Q do not manage it yet. For
the graphs middle easy and easiest, all the runs get similar
results, excluding rucir-Q-E-3Q.

Finally, results for the V − score metric are clearly differ-
ent to the previous ones. Note that in this case, the runs
from rucir outperform all other participants. Only in the
middle easy and easiest, our run manages to slightly ap-
proach the rucir lowest performance. KDEIM submissions
are clearly the worst performing system for this metric. In

the easiest case, results are far from the other runs.
The average results by team are shown in Table 2. We

were the only team with one submission, which explains the
“0 standard deviation” of our results. It is interesting to
remark that the rucir team manage to gets the best and
the worst performance for the final metric, the QU − score.
This could be explained by a problem with their rucir-Q-E-
3Q run. In general, our team performs well obtaining the
second position by teams and the fifth by runs. Indeed, we
have undesired performances for the V − score, which can
be explained by the few number of words used to represent
each vertical class (see Table 1) as well as the simplistic
strategy defined for this task. Note that this is consistent
with the results of Figure 4. Hardest vertical classes are
not adequately classified but the easiest are. An intuitive
solution is the expansion of the sets, however selecting larger
set could deal with a semantic shift.

5. DISCUSSION
Results obtained by our algorithm are promising. Note

that the code of the entire core of our algorithm is pre-
sented in Figure 1. It takes only 17 lines and it is able to
achieve a good performance overall. The code for selecting
the vertical class is not shown but it takes just few lines
and including more words to improve the performance will

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 3: D − nDCG@10 results for the submitted runs. From left to right and top to bottom, the hardest to the easiest
queries.

Table 2: Average and standard deviation results for each team. Best average performance marked in bold.
I − rec@10 D − nDCG@10 D#− nDCG@10 V − score QU − score

HULTECH 0.728±0.000 0.679±0.000 0.703±0.000 0.366±0.000 0.534±0.000
KDEIM 0.751±0.005 0.635±0.048 0.693±0.025 0.297±0.006 0.500±0.008
rucir 0.686±0.128 0.504±0.121 0.595±0.119 0.532±0.090 0.564±0.098

not increase the number of lines of code. All this is possi-
ble due to power of the used semantic vectors as well as the
simplicity of the DCM algorithm. These vectors were not
adapted to this specific task and are general vectors calcu-
lated over a huge collection of web documents. These vectors
are publicly available, which allows the replication of our ex-
periments for further research. The full python code will be
also available as extra content of this paper.

Another situation that could help to improve the results
is considering extra candidates as intents. It will not deal
with a significant increase of the code (or none). However,
to achieve top-1 performance some parameters must be ad-
justed and extra pre-processing or heuristics must be con-
sidered.

6. CONCLUSION
This paper presents the HULTECH participation in the

Query Understanding subtask of the NTCIR-12 IMine-2

Search Intent Mining task. Our submission achieves the
best performance in terms of D−nDCG@10 and the second
position when evaluated with the overall metric QU − score
against all teams. Our algorithm is based on a SRC algo-
rithm combined with semantic representations of words also
known as word embeddings.

The main drawback of our system is the inadequate per-
formance for the vertical class classification problem. Future
work will focus on the improvement of this situation. Addi-
tionally, we plan to include a word sense induction system
based on Web graph analysis [6] and its new developements
when combined with text content [1].

7. REFERENCES
[1] S. Acharya, A. Ekbal, S. Saha, P. Santhanam, J. G.

Moreno, and G. Dias. Multi-objective word sense
induction based on content and interlink connections.
In 21st International Conference on Applications of

(a) Hardest (b) Middle hard

(c) Middle easy (d) Easiest

Figure 4: V − score results for the submitted runs. From left to right and top to bottom, the hardest to the easiest queries.

Natural Language to Information Systems (NLDB
2016), 2016.

[2] Y. Liu, R. Song, M. Zhang, Z. Dou, T. Yamamoto,
M. P. Kato, H. Ohshima, and K. Zhou. Overview of
the ntcir-11 imine task. In IMine Subtask of the NII
Testbeds and Community for Information Access
Research Workshop (NTCIR-11 2014), 2014.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 27th Conference on Neural Information Processing
Systems (NIPS 2013), pages 3111–3119, 2013.

[4] J. G. Moreno and G. Dias. Hultech at the ntcir-10
intent-2 task: Discovering user intents through search
results clustering. In IMine Subtask of the NII
Testbeds and Community for Information Access
Research Workshop (NTCIR-10 2013), 2013.

[5] J. G. Moreno and G. Dias. Hultech at the ntcir-11
imine task: Mining intents with continuous vector
space models. In IMine Subtask of the NII Testbeds
and Community for Information Access Research
Workshop (NTCIR-11 2014), 2014.

[6] J. G. Moreno and G. Dias. Pagerank-based word sense
induction within web search results clustering. In
Proceedings of the 14th ACM/IEEE-CS Joint

Conference on Digital Libraries (JCDL 2014), pages
465–466, 2014.

[7] J. G. Moreno, G. Dias, and G. Cleuziou. Post-retrieval
clustering using third-order similarity measures. In
51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013), pages
153–158, 2013.

[8] J. G. Moreno, G. Dias, and G. Cleuziou. Query log
driven web search results clustering. In Proceedings of
the 37th International ACM SIGIR Conference on
Research & Development in Information Retrieval
(SIGIR 2014), pages 777–786, 2014.

[9] T. Sakai, Z. Dou, T. Yamamoto, Y. Liu, M. Zhang,
and R. Song. Overview of the ntcir-10 intent-2 task. In
Intent-2 Subtask of the NII Testbeds and Community
for Information Access Research Workshop
(NTCIR-10 2013), 2013.

[10] T. Yamamoto, Y. Liu, M. Zhang, Z. Dou, K. Zhou,
I. Markov, M. P. Kato, H. Ohshima, and S. Fujita.
Overview of the ntcir-12 imine-2 task. In IMine
Subtask of the NII Testbeds and Community for
Information Access Research Workshop (NTCIR-12
2016), 2016.

