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Abstract 
This paper describes a parallel algorithm to compute positional ngram statistics based on masks and suffix arrays. Positional ngrams 
are ordered sequences of words that represent continuous or discontinuous substrings of a corpus. In particular, the positional ngram 
model has shown successful results for the extraction of discontinuous collocations from large corpora. However, its computation is 
heavy. For instance, 4.299.742 positional ngrams (n=1..7) can be generated from a 100.000-word size corpus in a seven-word size 
window context. In comparison, only 700.000 ngrams would be computed for the classical ngram model. It is clear that huge efforts 
need to be made to process positional ngram statistics in reasonable time and space. For that purpose, we propose a parallel algorithm 
based on the concept of Parallel Sorting by Regular Sampling (PSRS) described in (Shi and Schaeffer, 1992). 
 

Introduction 
In the context of word associations, multiword units 
(sequences of words that co-occur more often than 
expected by chance) are frequently used in everyday 
language, usually to precisely express ideas and concepts 
that cannot be compressed into a single word. For 
instance, [Bill of Rights], [swimming pool], [as well as], [in 
order to], [to comply with] or [to put forward] are multiword 
units. As a consequence, their identification is a crucial 
issue for applications that require a certain degree of 
semantic processing (e.g. machine translation, information 
extraction, information retrieval or summarization). In 
order to identify and extract multiword units, (Dias, 2002) 
has proposed a statistically-based architecture called 
SENTA (Software for the Extraction of N-ary Textual 
Associations) that retrieves, from text corpora, relevant 
contiguous and non-contiguous sequences of words. 
 
However, the computation of SENTA is heavy. As it is 
based on positional ngrams (ordered sequences of words 
that represent continuous or discontinuous substrings of a 
corpus computed in a (2.F+1)-word size window context), 
the number of generated substrings rapidly explodes and 
reaches astronomic figures. (Dias, 2002) shows that ∆ 
positional ngrams can be computed in an N-size corpus for 
a (2.F+1)-size window context (See Equation 1).  
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Equation 1: Number of positional ngrams 

 
So, for instance, 4.299.742 positional ngrams would be 
generated from a 100.000-word size corpus in a seven-
word size window context. It is clear that huge efforts 
need to be made to process positional ngram statistics in 
reasonable time to tackle real world applications that deal 
with Gigabytes of data. For that purpose, (Gil and Dias, 
2003) have proposed an implementation that computes 
positional ngrams statistics in O(h(F) N log N)1 time 
complexity based on the Virtual Corpus approach 

                                                      
1 N is the size of the corpus and F is the window size. 

introduced by (Kit and Wilks., 1998). In particular, they 
apply a suffix-array-like method, coupled to the multikey 
quicksort algorithm (Bentley and Sedgewick, 1997) to 
compute positional ngram frequencies. Although their 
C++ implementation, realized over the CETEMPúblico2 
corpus, has shown satisfactory results by taking 8.34 
minutes to compute the positional ngram frequencies for a 
1.092.7233-word corpus on an Intel Pentium III 900 MHz 
Personal Computer for a seven-word size window context, 
improvements still need to be made.  
 
So, in this paper, we propose a parallel multikey quicksort 
algorithm that allows faster computation of positional 
ngrams frequencies taking into account the processing 
power of different central units spread over a network. In 
particular, we propose a parallel algorithm based on 
Parallel Sorting by Regular Sampling (PSRS) as described 
in (Shi and Schaeffer, 1992) that apply their method to 
randomly generated 32 bit integers and use the classical 
quicksort (Hoare, 1962) as the sequential sorting 
algorithm. For a variety of shared and distributed memory 
architectures, their results display better than half linear 
speedups. In the following sections, we will present our 
PSRS algorithm that sorts positional ngrams using the 
multikey quicksort as the sorting algorithm.   
 
This article is divided into four sections: (1) we explain 
the basic principles of positional ngrams and the mask 
representation to build the Virtual Corpus; (2) we present 
the suffix-array-based data structure that allows counting 
occurrences of positional ngrams; (3) we explain our 
PSRS algorithm; (4) we present some results. 

Positional Ngrams 

Principles  
The original idea of the positional ngram model comes 
from the lexicographic evidence that most lexical relations 
associate words separated by at most five other words 
(Sinclair, 1974). As a consequence, lexical relations such 
as collocations can be continuous or discontinuous 

                                                      
2 The CETEMPúblico is a 180 million-word corpus of 
Portuguese. It can be obtained at http://www.ldc.upenn.edu/. 
3 This represents 46.986.831 positional ngrams. 



sequences of words in a context of at most eleven words 
(i.e. 5 words to the left of a pivot word, 5 words to the 
right of the same pivot word and the pivot word itself). In 
general terms, a collocation can be defined as a specific4 
continuous or discontinuous sequence of words in a 
(2.F+1)-word size window context (i.e. F words to the left 
of a pivot word, F words to the right of the same pivot 
word and the pivot word itself). This situation is 
illustrated in Figure 1 for the collocation Ngram Statistics 
that fits in the window context. 
 
 
 
 
 

 
Figure 1: 2.F+1-word size window context 

 
Thus, as computation is involved, we need to process all 
possible substrings (continuous or discontinuous) that fit 
inside the window context and contain the pivot word. 
Any of these substrings is called a positional ngram. For 
instance, [Ngram Statistics] is a positional ngram as is the 
discontinuous sequence [Ngram ___ from] where the gap 
represented by the underline stands for any word 
occurring between Ngram and from (in this case, 
Statistics). More examples are given in Table 1. 
 

Positional 2grams Positional 3grams 
[Ngram Statistics] [Ngram Statistics from] 
[Ngram ___ from] [Ngram Statistics ___ Large] 

[Ngram ___ ___ Large] [Ngram ___ from Large] 
[to ___ Ngram] [to ___ Ngram ___ from] 

 
Table 1: Possible positional ngrams 
 
In order to compute all the positional ngrams of a corpus, 
we need to take into account all the words as possible 
pivot words. A simple way would be to shift the two-
window context to the right so that each word would 
sequentially be processed. However, this would inevitably 
lead to duplications of positional ngrams. Instead, we 
propose a one-window context that shifts to the right 
along the corpus as illustrated in Figure 2. It is clear that 
the size of the new window should be 2.F+1. 
 
 

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

....

....  
Figure 2: One-window context for F=3 

 
This new representation implies new restrictions. While 
all combinations of words were valid positional ngrams in 

                                                      
4 As specific, we intend a sequence that fits the definition of 
collocation given by (Dias, 2002): “A collocation is a recurrent 
sequence of words that co-occur together more than expected by 
chance in a given domain”. 

the two-window context, this is not true for a one-window 
context. Indeed, two restrictions must be observed. 
 
Restriction 1: Any substring, in order to be valid, must 
contain the first word of the window context.  
 
Restriction 2: For any continuous or discontinuous 
substring in the window context, by shifting the substring 
from left to right, excluding gaps and words on the right 
and inserting gaps on the left, so that there always exists a 
word in the central position cpos (Equation 2) of the 
window, there should be at least one shift that contains all 
the words of the substring in the context window. 
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Equation 2: Central position of the window 
 
For example, from the first case of Figure 2, the 
discontinuous sequence [A B _ _ E _ G] is not a positional 
ngram although it is a possible substring as it does not 
follow the second restriction. Indeed, whenever we try to 
align the sequence to the central position, at least one 
word is lost as shown in Table 2: 
 

Possible 
shift 

Central 
word 

Disappearing 
words 

[_ _ A B _ _ E] B G 
[_ _ _ A B _ _] A E, G 

 
Table 2: Shifting Substrings 

 
In contrast, the sequence [A _ C _ E F _] is a positional 
ngram as the shift [_ A _ C _ E F], with C in the central 
position, includes all the words of the substring.  
 
Basically, the first restriction aims at avoiding 
duplications and the second restriction simply guarantees 
that no substring that would not be computed in a two-
window context is processed. 

Virtual Representation 
The representation of positional ngrams is an essential 
step towards efficient computation. For that purpose, we 
propose a reference representation rather than an explicit 
structure of each positional ngram. The idea is to adapt the 
suffix representation (Manber and Myers, 1990) to the 
positional ngram case. 
 
Following the suffix representation, any continuous 
corpus substring is virtually represented by a single 
position of the corpus as illustrated in Figure 3. In fact, the 
substring is the sequence of words that goes from the 
word referred by the position till the end of the corpus. 
 
Unfortunately, the suffix representation can not directly be 
extended to the specific case of positional ngrams. One 
main reason aims at this situation: a positional ngram may 
represent a discontinuous sequence of words. In order to 
overcome this situation, we propose a representation of 
positional ngrams based on masks. 
 

Virtual   Approach to Deriving   Ngram Statistics from Large   Scale 

pivot 

F=3 F=3 



 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Suffix Representation5 
 
As we saw in the previous section, the computation of all 
the positional ngrams is a repetitive process. For each 
word in the corpus, there exists an algorithmic pattern that 
identifies all the possible positional ngrams in a 2.F+1-
word size window context. So, what we need is a way to 
represent this pattern in an elegant and efficient way. One 
way is to use a set of masks that identify all the valid 
sequences of words in a given window context. Thus, each 
mask is nothing more than a sequence of 1 and 0 (where 1 
stands for a word and 0 for a gap) that represents a 
specific positional ngram in the window context. An 
example is illustrated in Figure 4. 
 
 
 
 
 
 

 
 

Figure 4: Masks 
 

Computing all the masks is an easy and quick process. In 
our implementation, the generation of masks is done 
recursively and is negligible in terms of space and time. In 
Table 3, we give the number of masks h(F) for different 
values of F. 
 

F h(F) 
1 4 
2 11 
3 43 
4 171 
5 683 

 
Table 3: Number of masks 
 
In order to identify each mask and to prepare the reference 
representation of positional ngrams, an array of masks is 
built as in Figure 5. 

 
 
 
 
 
 
 
 

 
Figure 5: Masks Array 

                                                      
5 The $ symbol stands for the end of the corpus.  

From these structures, the virtual representation of any 
positional ngram is straightforward. Indeed, any positional 
ngram can be identified by a position in the corpus and a 
given mask. Taking into account that a corpus is a set of 
documents, any positional ngram can be represented by 
the tuple {{iddoc, posdoc}, idmask} where iddoc stands for the 
document id of the corpus, posdoc for a given position in 
the document and idmask for a specific mask. An example 
is illustrated in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Virtual Representation 
 
As we will see in the following section, this reference 
representation will allow us to follow the Virtual Corpus 
approach introduced by (Kit and Wilks, 1998) to compute 
ngram frequencies. 

Computing Frequencies 
 
With the Virtual Corpus approach, counting continuous 
substrings can easily and efficiently be achieved. After 
sorting the suffix-array data structure presented in Figure 
3, the count of an ngram consisting of any n words in the 
corpus is simply the count of the number of adjacent 
indices that take the n words as prefix. We illustrate the 
Virtual Corpus approach in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Virtual Corpus Approach 
 
Counting positional ngrams can be computed exactly in 
the same way. The suffix-array structure is sorted using 
lexicographic ordering for each mask in the array of 
masks.  
 
After sorting, the count of a positional ngram in the corpus 
is simply the count of adjacent indices that stand for the 
same sequence. We illustrate the Virtual Corpus approach 
for positional ngrams in Figure 8. 
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...
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..
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..
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Figure 8: Virtual Corpus for positional ngrams 

 
The efficiency of the counting mainly resides in the use of 
an adapted sort algorithm. For the specific case of 
positional ngrams, we have chosen to implement the 
multikey quicksort algorithm (Bentley and Sedgewick, 
1997) that can be seen as a mixture of the Ternary-Split 
Quicksort (Bentley and McIlroy, 1993) and the MSD6 
radixsort (Anderson and Nilsson, 1998). Different reasons 
have lead to use the Multikey Quicksort algorithm. First, it 
performs independently from the vocabulary size. Second, 
it shows O(N log N) time complexity. Third, (Anderson 
and Nilsson, 1998) show that it performs better than the 
MSD radixsort and proves comparable results to their 
newly introduced forward radixsort. 
 
The algorithm processes as follows: (1) the array of string 
is partitioned into three parts based on the first symbol of 
each string. In order to process the split, a pivot element is 
chosen just as in the classical quicksort giving rise to: one 
part with elements smaller than the pivot, one part with 
elements equal to the pivot and one part with elements 
larger than the pivot; (2) the smaller and the larger parts 
are recursively processed in exactly the same manner as 
the whole array; (3) the equal part is also sorted 
recursively but with partitioning starting from the second 
symbol of each string; (4) the process goes on recursively: 
each time an equal part is being processed, the considered 
position in each string is moved forward by one symbol.  
 
As we already said, the efficiency of the counting mainly 
resides in the use of an adapted sort algorithm. Moreover, 
the sorting phase is the most time consuming of our global 
architecture that extracts collocations. So, we define a 
Parallel Sorting by Regular Sampling Multikey Quicksort 
algorithm in order to fasten this stage. 

PSRS Multikey Quicksort Algorithm 
 
The Parallel Algorithm we propose is based on Parallel 
Sorting by Regular Sampling (PSRS) as described in (Shi 
and Schaeffer, 1992). In particular, they apply their 

                                                      
6 MSD stands for Most Significant Digit. 

method to randomly generated 32 bit integers and use the 
classical quicksort (Hoare, 1962) as the sequential sorting 
algorithm. For a variety of shared and distributed memory 
architectures, their results display better than half linear 
speedups. Our PSRS algorithm sorts positional ngrams 
using the multikey quicksort as the sorting algorithm. Our 
algorithm can be divided into three distinct phases: a 
parallel multikey quicksort phase; reorganization by 
global pivots phase; a merge sort phase.  
 
The parallel multikey quicksort phase consists in 
partitioning the original data (i.e. the corpus) into p 
contiguous lists, one per node7, and uses the multikey 
quicksort algorithm to sort each local contiguous list. In 
fact, in step 1, each node reads the entire data file to one 
suffix array structure into his local memory as in figure 98. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Virtual Corpus in memory 

 
In step 2, each of the p nodes determines a contiguous list 
of size w = N/p from the original data where N is the size 
of the corpus. In fact, each node makes a copy of size w of 
the suffix-array. We shall call this vector B which will be 
sorted. This situation can be seen in Figure 10. 
 

 
Figure 10: Suffix-array division 

 
In step 3, each node sorts its local contiguous list using the 
multikey quicksort algorithm which implements the 
“median of three modification method to improve the 
average performance of the algorithm while making the 
worst case unlikely to occur in practice” (Lan and 
Mohamed, 1992). After this phase, all local contiguous 
                                                      
7 A node represents a processing unit. 
8 The reader will note that after each token we insert its position 
in the file. 
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lists are sorted following a given mask as shown in Figure 
11.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Sorted Suffix-array 

 
The Vector C is constructed as, when we wish to 
communicate information with another node, we cannot 
exchange pointer information as they may not be the same 
on different nodes, but we can exchange information 
relative to the original positions of the tokens. 
 
The reorganization by global pivots phase consists in 
(1) determining the (p-1) local pivots on each node, (2) 
determining the global pivots from the p*(p-1) local 
pivots and (3) reorganizing the local list in terms of the 
global pivots. The idea is to join and sort all local sorted 
contiguous lists in a parallel way with good load 
balancing. For that purpose, we use a Regular Sampling 
approach suggested by (Shi and Schaeffer, 1992) 
described as follows.  
 
Each node determines (p-1) local pivots from its sorted 
list. The node 0 gathers the p*(p-1) local pivots (first 
inter-node communication). The node 0 calculates the 
global pivots from the list of all local pivots and 
broadcasts the global pivots to all nodes (second inter-
node communication). This situation is shown in Figure 
12. 
 

 
 

Figure 12: Reorganization for three nodes 
 

Finally, the merge sort phase consists of creating on 
each node one final locally sorted list using a merge sort 
list. For that purpose, each node splits its sorted list into p 
sorted sub-lists based on the values of the global pivots. 
 
Then, each node keeps one sorted sub-list and 
communicates the others to the appropriate nodes. Due to 
the fact that the sub-lists are of unequal size, we must first 
communicate the number of data items each node must 
send/receive from each other node before performing the 
actual data transfers (note that only vectors of integers will 
be passed i.e. integers representing the original token 
positions).  
 
In order to reduce the communication costs and network 
traffic we use a customized collective communication 
(ALL-to-ALL) based on phases in which only pairs of 
processors communicate as shown in figure 13. 
 

 
 

Figure 13: Collective communication 
 
This step is then followed by a merge of the received 
vector9. In fact, each node merges the p sorted sub-lists 
into one local sorted list using the merge sort algorithm 
and then calculates the frequency of each ngram. Then, 
each node communicates the position of first instance of 
each n-grams plus its frequency to node zero where the 
matrix of all ngrams frequency is constructed. 
 
The global architecture of our PSRS can be summarized 
as the following steps: 
 

1. The original data file (size N) is copied to all p 
processor nodes of the cluster. 

2. Each of the p nodes reads the data file to its local 
memory and builds the suffix-array.  

3. Each of p nodes determines a contiguous list of 
size w = N/p from the original data. 

4. Each node creates the valid masks. 
5. For each valid mask: 

a. Each node sorts the contiguous list 
using the multikey quicksort algorithm 
following the current mask. 

b. Each node determines (p-1) local pivots 
from its sorted list. 

c. The node 0 gathers all local pivots (first 
inter-node communication). 

d. The node 0 calculates the global pivots 
from the list of all local pivots. 

e. Node 0 broadcasts the global pivots to 
all nodes (second inter-node 
communication). 

f. Each node splits its sorted contiguous 
list into p sorted sub-lists based on the 
values of the global pivots. 

                                                      
9 In particular, we can overlap communication and merge 
routines using the non-blocking send/receive routines of the MPI 
standard. 
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10 1 0 1 0 0 1 0 

F=3 
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---- 



g. Each node keeps one sorted sub-list and 
passes the others to the appropriate 
nodes (third inter-node communication 
and the most expensive). 

h. Each node merges the p sorted sub-lists 
into one local sorted list using the merge 
sort algorithm. 

i. Each node communicates the position of 
first instance of each ngram plus its 
frequency to node zero. 

6. The node 0 constructs the matrix of all ngrams 
frequency. 

Results 
 
The algorithm has been implemented using the single 
program multiple data (SPMD) programming 
methodology using the ANSI C programming together 
with the freely available MPICH implementation of the 
Message Passing Interface (MPI) library. A network of up 
to ten identical workstations was used. Each workstation 
consists of a single Pentium IV 2.4 GHZ processor with 
512 Mb of RAM running the Windows XP operating 
system and they are connected via a 100 Mb Ethernet 
network. 
 
We have conducted a series of experiments for various 
different sized sub-corpora of the CETEMPúblico 
Portuguese corpus using a seven-word size window 
context, for which we present two examples. The details 
of the two chosen test cases are given in Table 3. 
 

Corpus Case A Case B 
Size in Mb 6,829 20,477 
# of words 1.000.000 3.000.000 
#of ngrams 42.999.742 128.999.742 

 
Table 3: Sub-Corpora Test Cases 
 
The experimental results based on the two test cases are 
then presented in Tables 4 and 5.  
 

Processors Time/Minutes 
1 3,18 

Speedup 
 

Efficiency 
 

2 2,11 1,51 0,75 
3 1,79 1,78 0,59 
4 1,46 2,17 0,54 
5 1,32 2,42 0,48 
6 1,18 2,69 0,45 
7 1,15 2,77 0,40 
8 1,03 3,10 0,39 
9 1,00 3,16 0,35 

10 0,98 3,24 0,32 
 
Table 4: Results for the Sub-Corpora, Case A 
 
In (Gil and Dias, 2002) the sequential algorithm took 8.34 
minutes to sort and calculate the ngram frequencies of a 
1.092.723-word corpus on an Intel Pentium III 900 MHz. 
Our result for a single processor for a 1.000.000 word 
corpus is 3.18 minutes which is to be expected as the 
performance of our single processor is approximately 2-3 

times faster that the one used in (Gil and Dias, 2002). For 
Case B, a corpora three times that of case A, the time of 
11,71 minutes is obtained for a single processor, in other 
words bearing out the O(h(F) N log N) complexity of the 
sequential algorithm. 
 

Processors Time/Minutes 
1 11,71 

Speedup 
 

Efficiency 
 

2 7,64 1,53 0,77 
3 5,79 2,02 0,67 
4 4,79 2,44 0,61 
5 4,22 2,78 0,56 
6 3,91 3,00 0,50 
7 3,68 3,19 0,46 
8 3,50 3,34 0,42 
9 3,34 3,50 0,39 
10 3,27 3,58 0,36 

 
Table 3: Results for the Sub-Corpora, Case B 
 
The performance of the parallel algorithm is similar in 
both cases, slightly better in the larger case B as would be 
expected. Initially with a small number of processors 
reasonable speedups and efficiency are obtained but this 
parallel performance deteriorates with the augmenting 
number of processors due to high levels of 
communications. However the overall time taken for the 
sort is still a monotonically decreasing function when 
using up to 10 processors (See Figure 14 and Figure 15). 
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Figure 14: Running Time vs number of Processors 
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Figure 15: Speedup and Efficiency for Case B 



Conclusions and Future Work 
 
Mining multiword units in real life situation means the 
ability to deal with Gigabytes of data in a useful time 
frame necessitating the use of high performance 
computing architectures. Low cost network-based 
distributed and parallel architectures are a useful 
alternative for high cost proprietary machines (Kacsuk and 
Vajda, 1999) and offer a flexible, scaleable and readily 
available solution. In this paper, we have proposed a 
PSRS multikey quicksort algorithm to compute positional 
ngram frequencies which will be integrated to the SENTA 
system developed by (Dias, 2002). However, speedups 
can surely be achieved adapting to our current parallel 
architecture the work of (Yamamoto and Church, 2000) to 
positional ngrams that propose to compute categories of 
contiguous substrings instead of the substrings 
themselves. 
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