
A Parallel Multikey Quicksort Algorithm for Mining Multiword Units

Rui Pereira, Paul Crocker, Gaël Dias

Beira Interior University, Computer Science Department
Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã, Portugal

{rpereira, crocker, ddg}@di.ubi.pt

Abstract
This paper describes a parallel algorithm to compute positional ngram statistics based on masks and suffix arrays. Positional ngrams
are ordered sequences of words that represent continuous or discontinuous substrings of a corpus. In particular, the positional ngram
model has shown successful results for the extraction of discontinuous collocations from large corpora. However, its computation is
heavy. For instance, 4.299.742 positional ngrams (n=1..7) can be generated from a 100.000-word size corpus in a seven-word size
window context. In comparison, only 700.000 ngrams would be computed for the classical ngram model. It is clear that huge efforts
need to be made to process positional ngram statistics in reasonable time and space. For that purpose, we propose a parallel algorithm
based on the concept of Parallel Sorting by Regular Sampling (PSRS) described in (Shi and Schaeffer, 1992).

Introduction
In the context of word associations, multiword units
(sequences of words that co-occur more often than
expected by chance) are frequently used in everyday
language, usually to precisely express ideas and concepts
that cannot be compressed into a single word. For
instance, [Bill of Rights], [swimming pool], [as well as], [in
order to], [to comply with] or [to put forward] are multiword
units. As a consequence, their identification is a crucial
issue for applications that require a certain degree of
semantic processing (e.g. machine translation, information
extraction, information retrieval or summarization). In
order to identify and extract multiword units, (Dias, 2002)
has proposed a statistically-based architecture called
SENTA (Software for the Extraction of N-ary Textual
Associations) that retrieves, from text corpora, relevant
contiguous and non-contiguous sequences of words.

However, the computation of SENTA is heavy. As it is
based on positional ngrams (ordered sequences of words
that represent continuous or discontinuous substrings of a
corpus computed in a (2.F+1)-word size window context),
the number of generated substrings rapidly explodes and
reaches astronomic figures. (Dias, 2002) shows that ∆
positional ngrams can be computed in an N-size corpus for
a (2.F+1)-size window context (See Equation 1).

()

++×−=∆ ∑ ∑∑

+

= = =

−−−
−

1.2

3 1 1

11
11.2

F

k

F

i

F

j

ik
j

i
j CCFFN

Equation 1: Number of positional ngrams

So, for instance, 4.299.742 positional ngrams would be
generated from a 100.000-word size corpus in a seven-
word size window context. It is clear that huge efforts
need to be made to process positional ngram statistics in
reasonable time to tackle real world applications that deal
with Gigabytes of data. For that purpose, (Gil and Dias,
2003) have proposed an implementation that computes
positional ngrams statistics in O(h(F) N log N)1 time
complexity based on the Virtual Corpus approach

1 N is the size of the corpus and F is the window size.

introduced by (Kit and Wilks., 1998). In particular, they
apply a suffix-array-like method, coupled to the multikey
quicksort algorithm (Bentley and Sedgewick, 1997) to
compute positional ngram frequencies. Although their
C++ implementation, realized over the CETEMPúblico2
corpus, has shown satisfactory results by taking 8.34
minutes to compute the positional ngram frequencies for a
1.092.7233-word corpus on an Intel Pentium III 900 MHz
Personal Computer for a seven-word size window context,
improvements still need to be made.

So, in this paper, we propose a parallel multikey quicksort
algorithm that allows faster computation of positional
ngrams frequencies taking into account the processing
power of different central units spread over a network. In
particular, we propose a parallel algorithm based on
Parallel Sorting by Regular Sampling (PSRS) as described
in (Shi and Schaeffer, 1992) that apply their method to
randomly generated 32 bit integers and use the classical
quicksort (Hoare, 1962) as the sequential sorting
algorithm. For a variety of shared and distributed memory
architectures, their results display better than half linear
speedups. In the following sections, we will present our
PSRS algorithm that sorts positional ngrams using the
multikey quicksort as the sorting algorithm.

This article is divided into four sections: (1) we explain
the basic principles of positional ngrams and the mask
representation to build the Virtual Corpus; (2) we present
the suffix-array-based data structure that allows counting
occurrences of positional ngrams; (3) we explain our
PSRS algorithm; (4) we present some results.

Positional Ngrams

Principles
The original idea of the positional ngram model comes
from the lexicographic evidence that most lexical relations
associate words separated by at most five other words
(Sinclair, 1974). As a consequence, lexical relations such
as collocations can be continuous or discontinuous

2 The CETEMPúblico is a 180 million-word corpus of
Portuguese. It can be obtained at http://www.ldc.upenn.edu/.
3 This represents 46.986.831 positional ngrams.

sequences of words in a context of at most eleven words
(i.e. 5 words to the left of a pivot word, 5 words to the
right of the same pivot word and the pivot word itself). In
general terms, a collocation can be defined as a specific4
continuous or discontinuous sequence of words in a
(2.F+1)-word size window context (i.e. F words to the left
of a pivot word, F words to the right of the same pivot
word and the pivot word itself). This situation is
illustrated in Figure 1 for the collocation Ngram Statistics
that fits in the window context.

Figure 1: 2.F+1-word size window context

Thus, as computation is involved, we need to process all
possible substrings (continuous or discontinuous) that fit
inside the window context and contain the pivot word.
Any of these substrings is called a positional ngram. For
instance, [Ngram Statistics] is a positional ngram as is the
discontinuous sequence [Ngram ___ from] where the gap
represented by the underline stands for any word
occurring between Ngram and from (in this case,
Statistics). More examples are given in Table 1.

Positional 2grams Positional 3grams
[Ngram Statistics] [Ngram Statistics from]
[Ngram ___ from] [Ngram Statistics ___ Large]

[Ngram ___ ___ Large] [Ngram ___ from Large]
[to ___ Ngram] [to ___ Ngram ___ from]

Table 1: Possible positional ngrams

In order to compute all the positional ngrams of a corpus,
we need to take into account all the words as possible
pivot words. A simple way would be to shift the two-
window context to the right so that each word would
sequentially be processed. However, this would inevitably
lead to duplications of positional ngrams. Instead, we
propose a one-window context that shifts to the right
along the corpus as illustrated in Figure 2. It is clear that
the size of the new window should be 2.F+1.

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

....

....
Figure 2: One-window context for F=3

This new representation implies new restrictions. While
all combinations of words were valid positional ngrams in

4 As specific, we intend a sequence that fits the definition of
collocation given by (Dias, 2002): “A collocation is a recurrent
sequence of words that co-occur together more than expected by
chance in a given domain”.

the two-window context, this is not true for a one-window
context. Indeed, two restrictions must be observed.

Restriction 1: Any substring, in order to be valid, must
contain the first word of the window context.

Restriction 2: For any continuous or discontinuous
substring in the window context, by shifting the substring
from left to right, excluding gaps and words on the right
and inserting gaps on the left, so that there always exists a
word in the central position cpos (Equation 2) of the
window, there should be at least one shift that contains all
the words of the substring in the context window.

1
2

1.2
+

 +

=
Fcpos

Equation 2: Central position of the window

For example, from the first case of Figure 2, the
discontinuous sequence [A B _ _ E _ G] is not a positional
ngram although it is a possible substring as it does not
follow the second restriction. Indeed, whenever we try to
align the sequence to the central position, at least one
word is lost as shown in Table 2:

Possible
shift

Central
word

Disappearing
words

[_ _ A B _ _ E] B G
[_ _ _ A B _ _] A E, G

Table 2: Shifting Substrings

In contrast, the sequence [A _ C _ E F _] is a positional
ngram as the shift [_ A _ C _ E F], with C in the central
position, includes all the words of the substring.

Basically, the first restriction aims at avoiding
duplications and the second restriction simply guarantees
that no substring that would not be computed in a two-
window context is processed.

Virtual Representation
The representation of positional ngrams is an essential
step towards efficient computation. For that purpose, we
propose a reference representation rather than an explicit
structure of each positional ngram. The idea is to adapt the
suffix representation (Manber and Myers, 1990) to the
positional ngram case.

Following the suffix representation, any continuous
corpus substring is virtually represented by a single
position of the corpus as illustrated in Figure 3. In fact, the
substring is the sequence of words that goes from the
word referred by the position till the end of the corpus.

Unfortunately, the suffix representation can not directly be
extended to the specific case of positional ngrams. One
main reason aims at this situation: a positional ngram may
represent a discontinuous sequence of words. In order to
overcome this situation, we propose a representation of
positional ngrams based on masks.

Virtual Approach to Deriving Ngram Statistics from Large Scale

pivot

F=3 F=3

Figure 3: Suffix Representation5

As we saw in the previous section, the computation of all
the positional ngrams is a repetitive process. For each
word in the corpus, there exists an algorithmic pattern that
identifies all the possible positional ngrams in a 2.F+1-
word size window context. So, what we need is a way to
represent this pattern in an elegant and efficient way. One
way is to use a set of masks that identify all the valid
sequences of words in a given window context. Thus, each
mask is nothing more than a sequence of 1 and 0 (where 1
stands for a word and 0 for a gap) that represents a
specific positional ngram in the window context. An
example is illustrated in Figure 4.

Figure 4: Masks

Computing all the masks is an easy and quick process. In
our implementation, the generation of masks is done
recursively and is negligible in terms of space and time. In
Table 3, we give the number of masks h(F) for different
values of F.

F h(F)
1 4
2 11
3 43
4 171
5 683

Table 3: Number of masks

In order to identify each mask and to prepare the reference
representation of positional ngrams, an array of masks is
built as in Figure 5.

Figure 5: Masks Array

5 The $ symbol stands for the end of the corpus.

From these structures, the virtual representation of any
positional ngram is straightforward. Indeed, any positional
ngram can be identified by a position in the corpus and a
given mask. Taking into account that a corpus is a set of
documents, any positional ngram can be represented by
the tuple {{iddoc, posdoc}, idmask} where iddoc stands for the
document id of the corpus, posdoc for a given position in
the document and idmask for a specific mask. An example
is illustrated in Figure 6.

Figure 6: Virtual Representation

As we will see in the following section, this reference
representation will allow us to follow the Virtual Corpus
approach introduced by (Kit and Wilks, 1998) to compute
ngram frequencies.

Computing Frequencies

With the Virtual Corpus approach, counting continuous
substrings can easily and efficiently be achieved. After
sorting the suffix-array data structure presented in Figure
3, the count of an ngram consisting of any n words in the
corpus is simply the count of the number of adjacent
indices that take the n words as prefix. We illustrate the
Virtual Corpus approach in Figure 7.

Figure 7: Virtual Corpus Approach

Counting positional ngrams can be computed exactly in
the same way. The suffix-array structure is sorted using
lexicographic ordering for each mask in the array of
masks.

After sorting, the count of a positional ngram in the corpus
is simply the count of adjacent indices that stand for the
same sequence. We illustrate the Virtual Corpus approach
for positional ngrams in Figure 8.

9
7
3
6
2
5
8
1
4

1 2
B

3
C

4
A

5
B

6
B

7
C

8
A

9
$

corpus

B B C A $ $
A B C A B B C A $$
A $ $
B B C A $ $
B C A B B C A $$
B C A $ $
C A B B C A $ $
C A $ $
$

A

A

mask

..
4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0
..

F=3

pos

doc 0 1 2 3 4 5 6 7 8 9 10 11 12

corpus 0 A B C D E F G H I J K L M
...

masks

..
4 1 0 0 1 0 1 1

5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1

7 1 0 0 1 1 1 0

8 1 0 0 1 1 1 1

9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0

..

{ {0,2} , 7 } = [C _ _ F G H _]

F = 3
1 2 3 4 5 6 7 8 9 10

corpus A B C D E F G H I J
mask 1 0 0 1 1 1 0

ngram A _ _ D E F _
X X X

…

1
A 2

B 3
C 4

A 5
B 6

B 7
C 8

A 9
$

corpus

A B B C A $ $

A B C A B B C A $$

A $ $

B B C A $ $

B C A B B C A $$

B C A $ $

C A B B C A $$

C A $ $
$ 9 8 7 6 5 4 3 2 1
substrings

Figure 8: Virtual Corpus for positional ngrams

The efficiency of the counting mainly resides in the use of
an adapted sort algorithm. For the specific case of
positional ngrams, we have chosen to implement the
multikey quicksort algorithm (Bentley and Sedgewick,
1997) that can be seen as a mixture of the Ternary-Split
Quicksort (Bentley and McIlroy, 1993) and the MSD6
radixsort (Anderson and Nilsson, 1998). Different reasons
have lead to use the Multikey Quicksort algorithm. First, it
performs independently from the vocabulary size. Second,
it shows O(N log N) time complexity. Third, (Anderson
and Nilsson, 1998) show that it performs better than the
MSD radixsort and proves comparable results to their
newly introduced forward radixsort.

The algorithm processes as follows: (1) the array of string
is partitioned into three parts based on the first symbol of
each string. In order to process the split, a pivot element is
chosen just as in the classical quicksort giving rise to: one
part with elements smaller than the pivot, one part with
elements equal to the pivot and one part with elements
larger than the pivot; (2) the smaller and the larger parts
are recursively processed in exactly the same manner as
the whole array; (3) the equal part is also sorted
recursively but with partitioning starting from the second
symbol of each string; (4) the process goes on recursively:
each time an equal part is being processed, the considered
position in each string is moved forward by one symbol.

As we already said, the efficiency of the counting mainly
resides in the use of an adapted sort algorithm. Moreover,
the sorting phase is the most time consuming of our global
architecture that extracts collocations. So, we define a
Parallel Sorting by Regular Sampling Multikey Quicksort
algorithm in order to fasten this stage.

PSRS Multikey Quicksort Algorithm

The Parallel Algorithm we propose is based on Parallel
Sorting by Regular Sampling (PSRS) as described in (Shi
and Schaeffer, 1992). In particular, they apply their

6 MSD stands for Most Significant Digit.

method to randomly generated 32 bit integers and use the
classical quicksort (Hoare, 1962) as the sequential sorting
algorithm. For a variety of shared and distributed memory
architectures, their results display better than half linear
speedups. Our PSRS algorithm sorts positional ngrams
using the multikey quicksort as the sorting algorithm. Our
algorithm can be divided into three distinct phases: a
parallel multikey quicksort phase; reorganization by
global pivots phase; a merge sort phase.

The parallel multikey quicksort phase consists in
partitioning the original data (i.e. the corpus) into p
contiguous lists, one per node7, and uses the multikey
quicksort algorithm to sort each local contiguous list. In
fact, in step 1, each node reads the entire data file to one
suffix array structure into his local memory as in figure 98.

Figure 9: Virtual Corpus in memory

In step 2, each of the p nodes determines a contiguous list
of size w = N/p from the original data where N is the size
of the corpus. In fact, each node makes a copy of size w of
the suffix-array. We shall call this vector B which will be
sorted. This situation can be seen in Figure 10.

Figure 10: Suffix-array division

In step 3, each node sorts its local contiguous list using the
multikey quicksort algorithm which implements the
“median of three modification method to improve the
average performance of the algorithm while making the
worst case unlikely to occur in practice” (Lan and
Mohamed, 1992). After this phase, all local contiguous

7 A node represents a processing unit.
8 The reader will note that after each token we insert its position
in the file.

Vector A

Vector B (vector of pointers), in node 0

Vector B (vector of pointers), in node 1

… …

3 7 5 6 2 1 9 4 8

corpus
1 2

B 3
C 4

A 5
B 6

B 7
C 8

A 9
A A

masks

...
4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0
...

0

10 11
B 12

C 13
A 14

B 15
B 16

C 17
A 18

$A
A _ A _ _ _ _

A _ B _ _ _ _

A _ B _ _ _ _

A _ C _ _ _ _

B _ A _ _ _ _

B _ A _ _ _ _

B _ C _ _ _ _

C _ A _ _ _ _

… C _ B _ _ _ _

… _ … _ _ _ _

 TOKENB TOKENA TOKENZ TOKENC

Memory

Vector A (vector of pointers)

1 2 3 N

lists are sorted following a given mask as shown in Figure
11.

Figure 11: Sorted Suffix-array

The Vector C is constructed as, when we wish to
communicate information with another node, we cannot
exchange pointer information as they may not be the same
on different nodes, but we can exchange information
relative to the original positions of the tokens.

The reorganization by global pivots phase consists in
(1) determining the (p-1) local pivots on each node, (2)
determining the global pivots from the p*(p-1) local
pivots and (3) reorganizing the local list in terms of the
global pivots. The idea is to join and sort all local sorted
contiguous lists in a parallel way with good load
balancing. For that purpose, we use a Regular Sampling
approach suggested by (Shi and Schaeffer, 1992)
described as follows.

Each node determines (p-1) local pivots from its sorted
list. The node 0 gathers the p*(p-1) local pivots (first
inter-node communication). The node 0 calculates the
global pivots from the list of all local pivots and
broadcasts the global pivots to all nodes (second inter-
node communication). This situation is shown in Figure
12.

Figure 12: Reorganization for three nodes

Finally, the merge sort phase consists of creating on
each node one final locally sorted list using a merge sort
list. For that purpose, each node splits its sorted list into p
sorted sub-lists based on the values of the global pivots.

Then, each node keeps one sorted sub-list and
communicates the others to the appropriate nodes. Due to
the fact that the sub-lists are of unequal size, we must first
communicate the number of data items each node must
send/receive from each other node before performing the
actual data transfers (note that only vectors of integers will
be passed i.e. integers representing the original token
positions).

In order to reduce the communication costs and network
traffic we use a customized collective communication
(ALL-to-ALL) based on phases in which only pairs of
processors communicate as shown in figure 13.

Figure 13: Collective communication

This step is then followed by a merge of the received
vector9. In fact, each node merges the p sorted sub-lists
into one local sorted list using the merge sort algorithm
and then calculates the frequency of each ngram. Then,
each node communicates the position of first instance of
each n-grams plus its frequency to node zero where the
matrix of all ngrams frequency is constructed.

The global architecture of our PSRS can be summarized
as the following steps:

1. The original data file (size N) is copied to all p
processor nodes of the cluster.

2. Each of the p nodes reads the data file to its local
memory and builds the suffix-array.

3. Each of p nodes determines a contiguous list of
size w = N/p from the original data.

4. Each node creates the valid masks.
5. For each valid mask:

a. Each node sorts the contiguous list
using the multikey quicksort algorithm
following the current mask.

b. Each node determines (p-1) local pivots
from its sorted list.

c. The node 0 gathers all local pivots (first
inter-node communication).

d. The node 0 calculates the global pivots
from the list of all local pivots.

e. Node 0 broadcasts the global pivots to
all nodes (second inter-node
communication).

f. Each node splits its sorted contiguous
list into p sorted sub-lists based on the
values of the global pivots.

9 In particular, we can overlap communication and merge
routines using the non-blocking send/receive routines of the MPI
standard.

TOKENB TOKENA TOKENZ TOKENX TOKENC

Memory

Sorted Vector B (vector of pointers)
Vector C (Sorted Vector B of corpus positions)

3
1
5
2
4

masks
..

4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0

F=3

1 2 3 4 5

g. Each node keeps one sorted sub-list and
passes the others to the appropriate
nodes (third inter-node communication
and the most expensive).

h. Each node merges the p sorted sub-lists
into one local sorted list using the merge
sort algorithm.

i. Each node communicates the position of
first instance of each ngram plus its
frequency to node zero.

6. The node 0 constructs the matrix of all ngrams
frequency.

Results

The algorithm has been implemented using the single
program multiple data (SPMD) programming
methodology using the ANSI C programming together
with the freely available MPICH implementation of the
Message Passing Interface (MPI) library. A network of up
to ten identical workstations was used. Each workstation
consists of a single Pentium IV 2.4 GHZ processor with
512 Mb of RAM running the Windows XP operating
system and they are connected via a 100 Mb Ethernet
network.

We have conducted a series of experiments for various
different sized sub-corpora of the CETEMPúblico
Portuguese corpus using a seven-word size window
context, for which we present two examples. The details
of the two chosen test cases are given in Table 3.

Corpus Case A Case B
Size in Mb 6,829 20,477
of words 1.000.000 3.000.000
#of ngrams 42.999.742 128.999.742

Table 3: Sub-Corpora Test Cases

The experimental results based on the two test cases are
then presented in Tables 4 and 5.

Processors Time/Minutes
1 3,18

Speedup

Efficiency

2 2,11 1,51 0,75
3 1,79 1,78 0,59
4 1,46 2,17 0,54
5 1,32 2,42 0,48
6 1,18 2,69 0,45
7 1,15 2,77 0,40
8 1,03 3,10 0,39
9 1,00 3,16 0,35

10 0,98 3,24 0,32

Table 4: Results for the Sub-Corpora, Case A

In (Gil and Dias, 2002) the sequential algorithm took 8.34
minutes to sort and calculate the ngram frequencies of a
1.092.723-word corpus on an Intel Pentium III 900 MHz.
Our result for a single processor for a 1.000.000 word
corpus is 3.18 minutes which is to be expected as the
performance of our single processor is approximately 2-3

times faster that the one used in (Gil and Dias, 2002). For
Case B, a corpora three times that of case A, the time of
11,71 minutes is obtained for a single processor, in other
words bearing out the O(h(F) N log N) complexity of the
sequential algorithm.

Processors Time/Minutes
1 11,71

Speedup

Efficiency

2 7,64 1,53 0,77
3 5,79 2,02 0,67
4 4,79 2,44 0,61
5 4,22 2,78 0,56
6 3,91 3,00 0,50
7 3,68 3,19 0,46
8 3,50 3,34 0,42
9 3,34 3,50 0,39
10 3,27 3,58 0,36

Table 3: Results for the Sub-Corpora, Case B

The performance of the parallel algorithm is similar in
both cases, slightly better in the larger case B as would be
expected. Initially with a small number of processors
reasonable speedups and efficiency are obtained but this
parallel performance deteriorates with the augmenting
number of processors due to high levels of
communications. However the overall time taken for the
sort is still a monotonically decreasing function when
using up to 10 processors (See Figure 14 and Figure 15).

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11
processors

(n
or

m
al

iz
ed

) t
im

e

Case A

Case B

Figure 14: Running Time vs number of Processors

0,00

1,00

2,00

3,00

4,00

1 2 3 4 5 6 7 8 9 10

processors

sp
ee

du
p

0,00

0,20

0,40

0,60

0,80

1,00

ef
ic

ie
nc

y

Speedup
Efficiency

Figure 15: Speedup and Efficiency for Case B

Conclusions and Future Work

Mining multiword units in real life situation means the
ability to deal with Gigabytes of data in a useful time
frame necessitating the use of high performance
computing architectures. Low cost network-based
distributed and parallel architectures are a useful
alternative for high cost proprietary machines (Kacsuk and
Vajda, 1999) and offer a flexible, scaleable and readily
available solution. In this paper, we have proposed a
PSRS multikey quicksort algorithm to compute positional
ngram frequencies which will be integrated to the SENTA
system developed by (Dias, 2002). However, speedups
can surely be achieved adapting to our current parallel
architecture the work of (Yamamoto and Church, 2000) to
positional ngrams that propose to compute categories of
contiguous substrings instead of the substrings
themselves.

References
Alexandre Gil and Gaël Dias. 2002. Using Masks, Suffix

Array-based Data Structures and Multidimensional
Arrays to Compute Positional Ngram Statistics from
Corpora. Workshop on Multiword Expressions of the
41st ACL meeting. 7-12 July. Sapporo. Japan.
http://www.di.ubi.pt/~ddg/publications/acl2003-1.pdf

Arne Anderson and Stefan Nilsson. 1998. Implementing

Radixsort. ACM Journal of Experimental Algorithmics,
Vol. 3. http://citeseer.nj.nec.com/79696.html

Chunyu Kit and Yorick Wilks. 1998. The Virtual

Approach to Deriving Ngram Statistics from Large
Scale Corpora. International Conference on Chinese
Information Processing Conference, Beijing, China,
223-229. http://citeseer.nj.nec.com/kit98virtual.html.

Gaël Dias 2002. Extraction Automatique d’Associations

Lexicales à partir de Corpora. PhD Thesis. New
University of Lisbon (Portugal) and University of
Orléans (France).
http://www.di.ubi.pt/~ddg/publications/thesis.pdf.gz

Hoare, C. A. R. 1962. Quicksort. Computer Journal 5,

1(April 1962), 10-15.

John Sinclair. 1974. English Lexical Collocations: A study

in computational linguistics. Singapore, reprinted as
chapter 2 of Foley, J. A. (ed). 1996, John Sinclair on
Lexis and Lexicography, Uni Press.

Jon Bentley and Robert Sedgewick. 1997. Fast Algorithms

for Sorting and Searching Strings. 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, New
Orléans. http://citeseer.nj.nec.com/bentley97fast.html.

Jon Bentley and Douglas McIlroy. 1993. Engineering a

sort function. Software - Practice and Experience,
23(11):1249-1265.

Kacsuk, P. and Vajda, F. 1999. Network-based

Distributed Computing, Prospective Reports on ICST
Research in Europe.
http://www.ercim.org/publication/prosp/

Lan,Y. and Mohamed, M.A. 1992. Parallel Quicksort in

Hypercubes Symposium on Applied Computing,
Proceedings of the 1992 ACM/SIGAPP symposium on
Applied computing: technological challenges of the
1990's, Kansas City, United States, 1992, pp740-746.

Mikio Yamamoto and Kenneth Church. 2000. Using

Suffix Arrays to Compute Term Frequency and
Document Frequency for All Substrings in a corpus.
Association for Computational Linguistics, 27(1):1-30.
http://www.research.att.com/~kwc/CL_suffix_array.pdf

Message Passing Interface Forum. MPI: A message-

Passing Interface Standard. Int. Journal of
Supercomputer Applications, 8(3/4):165-414, 1994

MPICH MPI Software http://www-

unix.mcs.anl.gov/mpi/mpich/

Shi, H. and Schaeffer, J. 1992. Parallel Sorting by

Regular Sampling, Journal of Parallel and Distributed
Computing, Vol 14, Nº 4, pp361-372.

Udi Manber and Gene Myers. 1990. Suffix-arrays: A new

method for on-line string searches. First Annual ACM-
SIAM Symposium on Discrete Algorithms. 319-327.
http://www.cs.arizona.edu/people/udi/suffix.ps

