
Evaluation of Different Similarity Measures for the Extraction of Multiword
Units in a Reinforcement Learning Environment

Gaël Dias�, Sérgio Nunes�

�Centre of Mathematics
Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
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Abstract
In this paper, we present an application of Genetic Algorithms to extract Multiword Units (i.e. complex lexical units such as compound
nouns, idiomatic expressions or phrase templates). For that purpose, a fitness function will be defined whose maximization will serve as
a basis for the identification of pertinent word � -grams (i.e ordered vectors of� words) based on different similarity measures. Finally,
we will provide an experiment realized over an English Linux Manual that evidences promising results.

1. Introduction
The acquisition of Multiword Units (MWUs) has long
been a significant problem in Natural Language Processing
(NLP). Indeed, most of the work in knowledge acquisition
has aimed at extracting explicit information from texts (i.e.
knowledge about the world) and has generally neglected
the extraction of implicit information (i.e. knowledge
about the language). However, for the past ten years, there
has been a renewal in phraseology mostly stimulated by
full access to large-scale text corpora in machine-readable
format. As a consequence, the evolution from formalisms
towards lexicalization1 has lead to propose the hypothesis
that the more a sequence of words is fixed, that is the less
it accepts lexical and syntactical transformations, the more
likely it should be a MWU. Compound nouns (Human
Rights), compound names (George W. Bush), compound
determinants (a number of), verbal locutions (to give rise),
adverbial locutions (as soon as possible), prepositional
locutions (such as) and conjunctive locutions (on the other
hand) share the properties of MWUs2.

In this article, we present a tool designed to identify and
extract MWUs from unrestricted text corpora. We named
it GALEMU (Genetic ALgorithm for the Extraction of
Multiword Units). GALEMU proposes an original inno-
vative architecture based on a floating point representation
genetic algorithm and a set of different similarity measures.
The basic idea of the application is simple. First, the text
corpus to be analyzed is segmented into a set of positional
� -grams (i.e. ordered vectors of � words) from which
significant individuals will have to be identified (Dias
et al., 2000a). For that purpose, each positional � -gram
is associated to a set of attribute values (e.g. frequency,
degree of cohesion, size etc.) that will represent a specific
chromosome of the overall population. Once the popula-

1i.e. The evolution from“general” rules towards rules specify-
ing the usage of words on a case-by-case basis.

2This classification is proposed by (Gross, 1996).

tion is defined, the maximization of the fitness function will
provide the “best” genotype that hopefully will be a global
maximum. Finally, in order to extract relevant MWUs
from the original population, a set of different similarity
measures will evidence the relatedness between a specific
positional � -gram in the population and the elected “best”
individual. As a consequence, very close genotypes will
be listed as pertinent word associations whereas unrelated
chromosomes will be discarded.

So, in order to evaluate our methodology, tests have
been realized over a Linux Manual written in English.
As expected, compound nouns/names/determinants and
verbal/adverbial/prepositional/conjunctive locutions have
been extracted. However, we will access that different re-
sults can be obtained using different scenari of extraction
i.e. different similarity measures.

2. The Gentetic Algorithm
A Genetic Algorithm (GA) is a stochastic algorithm whose
search method models two basic natural phenomena:
genetic inheritance and Darwinian strife for survival. In
this context, a GA performs a multi-directionnal search
over a sample space by maintaining a population of poten-
tial solutions and also encourages information formation
and exchange between individuals. As a consequence,
the population in consideration undergoes a simulated
evolution so that, at each generation, the relatively “good”
solutions reproduce and the relatively “bad” solutions die.
In particular, as any evolution program, a GA must have
the following five components: a genetic representation for
potential solutions to the problem, a way to create an initial
population of potential solutions, an evaluation function
rating solutions in terms of fitness, genetic operators
that alter the composition of children, values for various
parameters that the GA uses (e.g. operator probabilities).

In this section, we will specifically focus on the genetic
representation and the fitness function that we will use for



our optimization problem. Indeed, unlikely the three other
components whose techniques are generally well-known
and well established, problem representation and fitness
play a key role for the success of GAs.

2.1. Floating Point Representation

The binary representation traditionally used in genetic
algorithms has revealed some drawbacks when applied
to multidimensional, high precision numerical problems
(Michalewicz, 1996). As a consequence, experiments have
been realized for parameter optimization problems with
real-coded genes together with specific genetic operators
designed for them. On one hand, the conducted experi-
ments indicate that floating point representation is faster,
more consistent from run to run and provides better preci-
sion than the binary representation for large domains (Gold-
berg, 1989). On the other hand, as intuitively closer to the
problem space, the floating point representation allows a
one-gene-one-variable correspondence thus easing the cod-
ification process. Consequently, each chromosome can eas-
ily be represented as a vector of real numbers, each one
corresponding to a specific variable of the problem. In
the context of MWU extraction, we will define 7 variables
that have been proposed in different studies as good heuris-
tics for the identification of highly cohesive sequences of
words.

Gene ��: As evidenced in the previous section, associa-
tion measures have been widely used in order to define the
degree of cohesiveness of word � -grams. So, the more co-
hesive a word sequence is (i.e. the higher its association
measure value is), the more likely it is a MWU. Thus, as-
sociation measures are good heuristics for the identification
of relevant word associations. In the specific context of po-
sitionnal � -grams, (Dias et al., 2000b) have defined a new
� -ary association measure called the Mutual Expectation
that does not under-evaluate the degree of cohesion of se-
quences of words containing frequent single words. Our
first gene will model the Mutual Expectation of any given
� -gram.

Gene ��: Aside from association measures, frequency
is considered by many researchers (Daille, 1995) (Juste-
son and Katz, 1993) (Frantzi and Ananiadou, 1996b) as
an effective criterion for Multiword Unit identification. So,
highly frequent word� -grams are more likely to be MWUs
than unfrequent ones. Consequently, we propose that the
second gene of any � -gram individual should be its rela-
tive frequency.

Gene ��: However, (Frantzi and Ananiadou, 1996b)
demonstrate that stand-alone frequency can lead to error in
the acquisition process. Let’s consider the following word
sequence: soft contact lenses. Suppose that its frequency
is high enough so that it should be considered a candidate
MWU. A fortiori, both �-grams soft contact and contact
lenses should also be regarded as potential MWUs. How-
ever, only the latter is a pertinent word association. This is
due to the fact that while contact lenses can occur in the text
by itself, soft contact will always appear within soft contact
lenses. So, while the fact that an� -gram appearing in other
longer � -grams (i.e. super-groups) is a negative factor for

its relevancy, the word sequence increases in probability of
importance (i.e it increases in independence from its con-
text) as the number of these longer � -grams increases. We
will consider this number as our third variable-gene.

Gene ��: Moreover, in the specific context of termi-
nology, (Dias et al., 1999) evidence that complex terms
(i.e. terminologically relevant MWUs) are specific lexical
relations that favor the occurrence of unfrequent single
words in their core. So, the more an � -gram contains
frequent single words in its inside, the less relevant it
should be. As a consequence, for each positional � -gram,
we evaluate the arithmetic mean of the frequencies of all its
constituents in order to measure its relevancy. We will call
it the marginal frequency. In this context, a high marginal
frequency would induce irrelevancy. This measure will be
our fourth gene.

Before going on with the definition of our 3 remaining
genes, we will introduce the fitness function that our ge-
netic algorithm will have to maximize. As a matter of fact,
we will see that the remaining genes will only introduce
constraints in our optimization problem.

2.2. Fitness Function
To distinguish between different solutions, we use an ob-
jective (evaluation) function which plays the role of the en-
vironment. This function is called the fitness function. In
the context of our research, we need to select pertinent in-
dividuals in terms of word associations among the set of
attribute-valued positional� -grams. From the previous as-
sumptions, a simple fitness function can directly be sug-
gested. Indeed, a potential MWU is a particular � -gram
with a high association measure, a high frequency, a high
number of longer strings in which it appears and a small
marginal frequency. A straightforward fitness function is
thus defined in equation 1 where� is a given chromosome.

���� � �� � �� � �� � �� (1)

However, real-word optimization problems are generally
constrained. The specific task of extracting MWUs does
not avoid this general rule. As a consequence, aside from
the definition of the fitness function, a specific set of do-
main constraints and inequalities will have to be defined.

2.3. Handling Constraints
In the context of floating point representation genetic algo-
rithms, many researches have been carried out in order to
define suitable optimization processes. However, as stated
in (Cooper and Steinberg, 1970), “A little observation and
reflection will reveal that all optimization problems of the
real word are, in fact, constrained problems”. As a con-
sequence, this assumption will lead to the introduction of
three new genes that will be used to penalize infeasible so-
lutions.

Gene �� and Gene ��: In order to select potential
MWUs from a set of association measure valued � -grams,
(Silva et al., 1999) have proposed an original methodology
that does not rely on global thresholds. The basic idea is



simple. A positional � -gram is a MWU if its association
measure value is higher or equal than the association mea-
sure values of all its sub-groups of (N-1) words (i.e. all
the � � �-grams contained in it) and if it is strictly higher
than the association measure values of all its super-groups
of (N+1) words (i.e. all the � � �-grams containing it).
So, for our optimization problem, the fifth and sixth genes
of each individual will respectively be the highest Mutual
Expectation value of all the sub-groups of the considered
genotype and the highest Mutual Expectation value of all
its super-groups. As a consequence, two constraints will
directly be formulated in the inequations 2 and 3.

�� � �� (2)

�� � �� (3)

Gene ��: Finally, (Frantzi and Ananiadou, 1996a) and
(Justeson and Katz, 1993) propose that longer � -grams
should be preferred to smaller ones. In particular, if the
frequency of a given � -gram is equal to the frequency of
a longer � -gram that contains it, the former should not
be considered as a relevant word association. As a con-
sequence, our seventh gene-variable will evidence the fre-
quency value of the most frequent super-group of the con-
sidered individual. For that purpose, the following con-
straint will be formulated.

�� � �� (4)

Additionally, new constraints can be evidenced thus intro-
ducing knowledge about the problem. For instance, it is
clear that the marginal frequency of an � -gram must be
superior or at least equal to its relative frequency.

�� � �� (5)

In the same way, the number of different super-groups of a
given � -gram can not be superior to its relative frequency,
thus giving rise to the following constraint.

�� � �� (6)

3. Similarity Measures
The application of the genetic algorithm over the initial
population is likely to provide the “best” genotype that is
supposed to evidence the “typical” MWU. However, work
still need to be done in order to identify pertinent word
associations. For that purpose, we will use a similarity
measure whose goal will be to evaluate the relatedness
between each � -gram built from the initial population and
the “typical” selected MWU.

When variables are measured quantitatively, it is natural
to evaluate similarity as a measure of distance. The ba-
sic idea is simple: the more distant two pairs of units are,
the less similar they are. For that purpose, different mea-
sures have been defined. We will access four of them

that have been implemented in GALEMU. So, suppose that
�� � ���� � ��� � ���� ���� is a row vector of observations on
	 variables associated with a label 
. The distance between
two units 
 and � is defined as ��� � 
���� ��� where

 is some function of the observed values. The following
functions have been proposed.
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In the context of our work, the application of these similar-
ity (or distance) measures is straightforward. Indeed, � �

may be regarded as the elected chromosome and � � as a
particular individual of the initial population that will have
to be compared with the “typical” MWU.

4. Experiment and Results
In order to evaluate our methodology, tests have been per-
formed over an English Linux Manual of approximatively
54000 words3 that has been extracted from the IJS-ELAN
text collection encoded with the Text Encoding Initiative
format (Erjavec, 1999). In this paper, we will specifically
focus on the results obtained by applying different simi-
larity measures over the same initial population. In that
context, we will propose a performance evaluation based
on precision rate (# of correct MWUs / # of extracted
MWUs) and spread (# of correctly extracted MWUs).
Although it is usually difficult to determine whether a word
association is a MWU or not, we will try to stick to (Gross,
1996)’s classification. In order to perform an homogeneous
evaluation, we defined a typical set of parameters that is
shown in Table 1.

Parameter Value
Number of Generations 6000

Size of the Sample Population 50
Mutation Probability 0.01
Crossover Probability 0.6

Mutation Type Non-uniform
Crossover Type Uniform
Distance Error 0.15

Table 1: Parameters of the Experiment

As expected, a great deal of linguistic phenomena have
been identified. Thus, compound nouns, names, deter-
minants and verbal, adverbial, prepositional, conjunctive

3This corpus may be considered as a small one compared to
the standards in the field. However, purely statistical methodolo-
gies increase in quality as the size of the corpus increases. As a
consequence, we will show that our technique is suitable to small
corpora and should easily demonstrate better behavior with bigger
texts.



locutions have been identified for all scenari. We propose
a sample of the extracted MWUs in Table 2.

Extracted MWUs
Home Page Patrick Volkerding

operating system Red Hat
in some way permission denied

something goes wrong free of charge
as well as X Window System

to compile a kernel ” file not found ”

Table 2: Sample Extracted MWUs

However, different results of precision and spread are
revealed as shown in Table 3.

Distance Precision (%) Spread (# of units)
�� 64 73
�� 62 29
�� 71 131
�� 70 53

Table 3: Comparative Results

A quick look at the results show that two distinct sets of
measures can be identified. On one side, the Euclidean
and the Divergence distances evidence results below 65
% precision whereas the Bray and Curtis and Soergel
measures demonstrate precision results around 70 %.
These results are not surprising at all. Indeed, for both sets,
the formulae are quite similar. However, it is interesting to
notice that 9 % precision can be gained whether one uses
the Euclidean measure or the Bray and Curtis distance
to evaluate the results. Similarly, the values for spread
show a great discrepancy between measures in the same
set. Indeed, the Soergel distance only extracts 40 % of
the expressions elected with the Bray and Curtis measure
and the same can be assessed between the Euclidean and
the Divergence distances. However, a detailed analysis of
the formulae (namely the denominators) show that these
results were to be expected. Nevertheless, they evidence
a classical evaluation problem. As a matter of fact, the
differences evidenced in the acquisition process are due
to the definition of the same threshold for all the four
measures. This should clearly be avoided. But then, what
would be the basis for an impartial evaluation? We will
leave this question in open.

5. Conclusions
In this paper, we have presented an application of Genetic
Algorithms for the specific task of Multiword Unit extrac-
tion. For that purpose, a fitness function, together with a set
of constraints, has been defined whose maximization has
served as a basis for the identification of pertinent word � -
grams based on different similarity measures. In particular,
we have provided an experiment realized over an English

Linux Manual that evidences promising results. However,
different issues may be obtained depending on the simi-
larity measure in use. The system will be soon on-line at
http://galemu.di.ubi.pt.
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