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Abstract—Depression is a severe psychological disorder that
is experienced by a significant number of individuals across the
globe. It greatly changes the way one thinks, triggering a constant
decline in mood. Studies have shown that gender can act as
a good indicator of depression. In this paper, we analyse the
effects of gender information in the estimation of depression.
We have carried out different experiments on the benchmark
data set named Distress Analysis Interview Corpus - a Wizard
of Oz (DAIC-WOZ). Concretely, we discovered that a) gender
information substantially improves the performance of depression
severity estimation, and b) adversarially learning to predict the
depression score distributed by gender improves the performance
of depression severity estimation.

Index Terms—Depression, Multitask learning, Gender

Depression is a widespread and severe psychiatric disorder
that has a negative effect on how one perceives things. It is
marked by constant sorrow, lack of motivation and an inability
to pursue tasks that are typically loved by one. It is one of
the largest worldwide causes of ill health. Over 300 million
people are reportedly suffering from depression, a rise of over
18% from 2005 to 2015. 1

On an average, depression lasts from 4 to 8 months. Insom-
nia, emaciation, exhaustion, feelings of worthlessness, opioid
or alcohol misuse, and diminished capacity to remember, focus
and undertake decisions are some of the signs and side-effects
of depression. It may also be characterized by feelings of
death, suicide and attempted suicide in serious situations. The
annual number of deaths due to depression is, unfortunately,
on the rise. 2

It is not fully clear what causes depression, and there
may not be one particular source. It is possible that major
depressive disorders are due to complex variations of variables
such as the sufferer’s genes, psychology, and social climate.
People who have witnessed major traumatizing events like

1A figure published by the World Health Organisation, available at https:
//bit.ly/2rsqQoP.

2A finding by Max Roser and Hannah Ritchie, available at https://bit.ly/
2mnyVZ6.

a family member’s or friend’s death, those with personality
disorders like the incapability to cope with rejection and
disappointment, patients with past history of severe depression,
and people with a history of child abuse are at increased risk
of depression [1].

The diagnosis of depression is a complex topic since many
of its manifestations are covert. As depressed individuals don’t
socialize often, it becomes even harder to identify. The sufferer
is evaluated on regular questionnaires, for the proper diagnosis
of depression. Various methods for diagnosing depression have
been researched on, in the literature. A few of them are
the Hamilton Depression Rating Scale (HDRS), the Personal
Health Questionnaire Depression Scale (PHQ), the Center
for Epidemiologic Studies Depression Scale (CES-D), the
Montgomery and Asberg Depression Rating Scale (MADRS)
3, the Beck Depression Inventory (BDI), and the Hospital
Anxiety and Depression Scale (HADS). In particular, the
eight-item PHQ-8 [2] is agreed upon as a valid diagnostic
and severity measure for depressive disorders in many clinical
studies [3].

The increasingly rising global prevalence of depression and
mental disease serves as a catalyst for the development of
more complex, customized and automatic solutions that can
diagnose it. Affective computing is one branch of study that
relies on extracting data to quantify human emotions via facial
expressions, vocal sounds and body gestures. A significant
business purpose of affective computing is to develop human-
computer interfaces that can perceive and respond effectively
to the emotional state of the participant. As a result, affective
computation methods have been used for predictive depression
diagnosis [4], [5]. However, seldom initiatives have attempted
to tackle the impact of gender on the automatic diagnosis of
depression [7], [8]. In this paper, we propose to study different

3Recommandation of the French Haute Autorité de la Santé available at
https://bit.ly/2EaOs92.



gender-aware models in multimodal settings, as clinical studies
have evidenced the differences in experiencing depression
between male and female [9].

I. RELATED WORK

A significant number of computer science research projects
have been proposed over the past few years to deal with mental
health problems [10], [11], and there has been a resurgence of
activity in the automated diagnosis of depressive disorders.
A few initial efforts have focused on the use of appropri-
ate descriptors and features, that could be leveraged using
learning systems. Scherer et al [12] explore the capacity of
descriptors from non-verbal behaviour, to point out indicators
of psychiatric conditions like depression. In particular, the four
suggested descriptors that can be derived spontaneously via
visual cues are: downward angling of the head, smile length
and strength, eye gaze direction, and self-touching. Chatterjee
et al [13] study the role of various context-based descriptors of
heart rate variability to assess the psychological health of an
individual. Cummins et al [14] concentrate on how distress and
suicidal behavior are indicated by certain paralinguistic speech
characteristics (prosodic characteristics, source characteristics,
formant characteristics, spectral characteristics) and on how to
use this knowledge in prediction and classification systems.
Morales et al [15] believe that by designing features that cap-
ture syntactic structure and semantic information, researchers
can look beyond the acoustic properties of expression. Within
this context, Wolohan et al [16] state that the overall perfor-
mance of the classification indicates linguistic model versions
are relatively stable and also reliable for the diagnosis and
monitoring of depression. Another interesting branch of study
using textual features include the analysis of information from
social media [17], [18]. Some of the works use specific corpora
fine-tuned for these tasks [19].

Another potentially fruitful trend seeks to leverage all
modalities into a single learning paradigm and is often referred
to as multimodal detection of depression [33]. Within this
context, many active research studies have been performed.
Dibeklioglu et al. [21] compare, individually and in combina-
tion, the facial movement patterns, head movement nuances,
and voice prosody, and show that techniques using multimodal
machine learning result in the most effective detection. Yang et
al. [22], in the DAIC-WOZ (Distress Analysis Interview Cor-
pus - a Wizard of Oz) benchmark dataset, achieve acceptable
performance to predict the PHQ-8 rating by integrating acous-
tic, visual and textual features, using decision-tree classifiers.
More recently, Morales et al. [5], [33] worked on a detailed
review of fusion techniques using SVM (early, late and hybrid)
for the detection of depression integrating acoustic, visual
and textual characteristics (especially syntactic). Concretely,
they demonstrate that the syntax-informed fusion strategy is
capable of exploiting syntactic data to target insightful nuances
of speech data, but the overall findings appear to imply that
this finding is not statistically confirmed. Qureshi et al. [34]
undertook a multimodal-multitask approach to simultaneously
predict the depression level, and classify the severity of depres-

sion, and found that fusion of modalities, and the concurrent
learning that happens over the other related task, both improve
the estimation of depression severity.

Not a lot of work has been done on how depression is
dependent on gender, and how it is different in males and
females. Within this context, Conklin et al. [23] analyse
the correlation between chronic sleep deprivation and the
symptoms of depression among adolescents, from a gender
perspective, where they find that persistent sleep deprivation
is correlated with steady increase in depression scores among
young women, but no such pattern was found in young men.
More recently, Lopez et al. [24] find that in general, automatic
depression detection, when done for each gender separately,
leads to its better estimation. They even de-identify speech,
and find that the difference is not a lot for original speech,
but it is considerable when using with de-identified speech.
[6] reviews several works in psychological research on the
difference in gender, in depression. They state that by the
middle of adolescence, females are about twice as likely
to be diagnosed with depression and exhibit twice as many
depressive symptoms as males, and this trend may continue
till they are atleast 55 years old.

II. DAIC-WOZ DEPRESSION DATASET

The depression dataset of DAIC-WOZ 4 is part of a broader
corpus, the Distress Analysis Interview Corpus [25], which
involves psychiatric interviews meant to benefit the assessment
of psychological distress disorders like anxiety, depression,
and PTSD (Post Traumatic Stress Disorder). These recordings
were gathered as part of a broader initiative to build a
software agent which interviews individuals and recognizes
verbal and non-verbal mental disorder indicators. The infor-
mation collected includes video and audio clips, and detailed
questionnaire answers from the interviews done by a virtual
interviewer named Ellie, which is controlled by a human.
For a range of verbal and non-verbal attributes, the data was
transcribed and annotated.

The dataset contains 189 interview sessions. Out of these
sessions, out of which 102 are males, and 87 are females.
In the training split, 63 out of 107 are males, and 44 are
females; in the validation split, 16 out of 35 are males, and
19 are females; and in the test split, 23 out of 47 are males,
and 24 are females. We discard a few interviews, since a few
were not complete, and had discontinuities. A unique ID is
assigned to every interview, allowing it to be identified. Each
instance of the dataset is comprised of the session’s audio
clip, the interviewee’s cartesian coordinates of sixty eight
facial landmarks, the HoG (Histogram of oriented Gradients)
features of his/her face, the eye gaze and head pose features
extracted using OpenFace [26], through out the whole length
of the interview, the continuous facial action units of the
face, extracted using CERT [27], the facial action coding
software, the formant and COVAREP features of the voice,
extracted using COVAREP [28], and the whole transcript of

4http://dcapswoz.ict.usc.edu/.



the session. All the extracted features are temporal by nature.
For the ease of discussion, we cluster the modalities into
three major groups: a) the visual or ocular modalities, which
is comprised of the 68 landmarks on the face, the eye-gaze
and head-pose features, and action units of the face, b) the
auditory or the acoustic modalities, comprised of the formant
and the COVAREP features, and c) the linguistic or the textual
modality, consisting of the transcript of the interview session.
This grouping is done for a better explanation of our analysis,
and holds no relevance in the experiments described in this
paper.

We begin with the ocular modalities. Every time-step of the
facial landmark modality is comprised of the time-stamp, re-
liance, detection success indicator, and the (X, Y, Z) cartesian
coordinates of all the above mentioned facial landmarks. Every
time-step of the head-pose data is made up of time stamp,
reliance, detection success indicator, (Rx, Ry, Rz), and (Tx, Ty,
Tz). Here, (Rx, Ry, Rz) are the coordinates of head rotation in
Radians, and (Tx, Ty, Tz) are the coordinates of head position
in millimetres. The eye-gaze data time-steps is made up of
time stamp, reliance, detection success indicator, (x0, y0, z0),
(x1, y1, z1), (xh0, yh0, zh0), (xh1, yh1 and zh1). Four vectors are
used to represent the eye-gaze. The direction of the eye-gaze is
described by two vectors (x0, y0, z0) and (x1, y1, z1). The gaze
is also described in the coordinate space of the head, using
the remaining vectors (xh0, yh0, zh0) and (xh1, yh1, zh1) (when
the eyes roll upwards, these two vectors specify ‘up’, even
though the head is not facing the camera). Each time step of
the action units modality is made up of time stamp, reliance,
detection success indicator, and some numbers specifying the
appropriate action unit of the face. The frequency at which
these features were recorded is 30 Hertz.

In the auditory group of modalities, every time-step of
the formant and COVAREP data contains 74 and 5 features
respectively. These are different features of the interviewee’s
or the virtual assistant’s voice. The frequency at which both
these data are recorded is 100 Hertz. There’s one common
attribure in both these modalities, an indicator named VUV
(Voiced/Unvoiced), which specifies if that particular bit is
voiced or not. According to the manual of the DAIC-WOZ
dataset, we are advised to not use those time steps where the
VUV indicator is 0.

The interview-transcript, that happens to be the only modal-
ity of the linguistic group, is made up of the words uttered by
the virtual assistant Ellie, and the interviewee. Each time-step
is made up of start time, the starting time of each sentence
of the speaker, stop time, the time-stamp of the instant when
the speaker finishes uttering, speaker, an indicator specifying
who the speaker is, whether it is the virtual assistant, or
the interviewee, and value, the words uttered by the speaker,
verbatim.

We use the training, validation and test split specifications
provided with the dataset. Both the training and validation
splits have the unique identifications of the interviews, the
binary values of PHQ-8 (which is 1 when it is greater than
10, 0 otherwise), the PHQ-8 score values, the gender of the

interviewee, and individual answers to each of the questions
of the PHQ-8 questionnaire. The test split is comprised of
the interview identification numbers, and the gender of the
interviewee.

III. DATA PRE-PROCESSING

We have used different pre-processing techniques for dif-
ferent modalities of data. They are listed in the subsections to
come.

A. Visual modalities pre-processing

In the coordinates of the 68 landmarks of face, we scale the
Z-coordinate by first removing its average value (calculated
over all the time steps), from all the time-steps. This ensures
that there’s no bias along the Z axis, since the person can be
sitting far away from ,or near to the camera. We then scale
the coordinates in a way that the mean distance of each of the
point from the origin of the coordinate system is 1. Next, we
compute the Euclidean distance between all the possible 2278
point pairs, and append this to the scaled coordinates of the
facial landmarks. This gives us a vector of length 2482, for
every time step.

When it comes to the head-pose modality, we re-size (Tx, Ty,
Tz) by dividing all of them by 100. Since 30 Hertz makes it a
lot of time steps, we down-size all the visual data modalities to
5Hz. We have adopted a zero-tolerance strategy towards time
steps with no tracking success (where the success indicator
is 0), and discard all such time steps. We take this decision,
as we are wary of introducing any artefacts into the attribute
space of the modality. Since different interviews go on for
different time lengths, we pad each of the ocular modality
time series data with zeroes along the time axis, to have a
uniform length of 10000 time steps for each of the data point.
We don’t perform any further pre-processing on the eye-gaze
data, as all the values fall between -1 and 1. We don’t perform
pre-processing on the facial action units too, since scaling has
already been done to these features, and they fall between 0
and 1.

B. Acoustic modalities pre-processing

We follow the same zero-tolerance strategy, and throw away
all the time steps where the Voiced/Unvoiced indicator values
are 0. Like in any typical interview, the virtual assistant and
the interviewee speak in turns. Since we look for the formant
and COVAREP features of the interviewee only (and not of the
virtual assistant), we segregate them using the start and stop
time values specified in the interview transcription, and use
those of the interviewee, to make predictions. Since speaking
anything meaningful in less than a second is seldom, we
discard those time steps where the interviewee has spoken for
less than one second. We pad these features with zero vectors,
along the temporal axis, to get a uniform length of 80000 and
120000 time steps respectively for COVAREP and formant
modalities.



C. Text modality pre-processing

We only collect the utterances made by the interviewee,
and analyse them in an increasing order, sorted with respect
to their start times. Since colloquial language has been used
by many of the interviewees, we make the English utterances
formal by substituting the contractions (like “isn’t”, “ain’t”)
with the corresponding full words (“is not”, and “are not”).
Then, we encode each sentence of the interviewee into a 512
dimensional vector, which are extracted from a pre-trained
Universal Sentence Encoder [29], after feeding the sentences
to it. Again, We pad these time steps with zero vectors on the
time axis, to get a uniform length of 400 time-steps for all the
interviewees.

IV. METHODOLOGY

To test our hypothesis, we designed and experimented with
5 different networks. They are:
• Depression estimation without gender information

(Genless)
• Depression estimation with concatenated gender informa-

tion (Genconcat)
• Multitask prediction of depression level and gender

(Genpred)
• Multitask prediction of depression level in males and fe-

males separately, using shared-private multitask network
[35] (GenSP)

• Multitask prediction of depression level in males and
females separately, using adversarial shared-private mul-
titask network [35] (GenASP)

We group the explanation of these 5 networks into 2 groups.
We proceed by explaining Genless, Genconcat and Genpred first,
then GenSP and GenASP next.

A. Genless, Genconcat and Genpred

The Genconcat and Genpred networks derive their architec-
ture from Genless with a few modifications. So we describe
the architecture of Genless in detail, and state the necessary
modifications in order to derive the architectures of Genconcat
and Genpred. The Genless consists of three main sub-networks.
They are 1) modality encoding sub-network, 2) the modality
fusion sub-network and 3) the PHQ-8 score estimator.

1) Modality encoding sub-network: Since all the modalities
of the dataset are time-series data, we use LSTMs to process
them to predict the PHQ-8 score. Concretely, we pass the
features of all the time-steps to a standard LSTM network
(LSTM) [36]. We take the state vector from the last time step,
and pass it to a fully connected layer (FC).

In the case of Genconcat, we concatenate the gender binary
value (a binary value representing male/female) before passing
it to the fully connected layer. We then feed the output of this
fully connected layer to a linear regression unit, to get the
PHQ-8 score. There are 7 modalities in our dataset. We train
7 different modality encoders separately to predict the PHQ-8
score.

In the case of Genpred, along with PHQ-8 score regression,
we predict the gender of the participant using the output

of the fully connected layer FC, by passing it to a binary
classification unit (i.e. a fully-shared multitask architecture).

We train these networks using Adam optimizer [37] on
mean squared error, and use network which performs the
best on the validation set. For Genpred, we take a weighted
average of mean squared error (for PHQ-8 prediction) and the
binary cross-entropy error (for gender classification) as the
loss function, and optimize on this using the same optimizer.

2) Modality fusion sub-network: In addition to using in-
dividual modalities to predict the PHQ-8 score, we employ
a multi-modal fusion technique to use information from all
modalities, and predict the PHQ-8 score. Our technique for
multi-modal fusion resembles with the one used by Qureshi et
al [38]. We call the output from the fully connected layer FC of
a modality encoder as the modality encoding of that modality.
Note that the modality encodings are vectors of different
lengths, as we use different hyper-parameters (number of units
in LSTM and in FC) for the encoders of different modalities. In
order to make them of the same length (which is 128, in our
setup), we pass these encodings to 7 fully-connected layers
(all these fully connected layers have the same number of
units). Now, we take the weighted average of these 7 modified
modality encodings (as a dot product of the horizontally-
concatenated modality encodings H and the weight vector
α), to get the fused encoding F. The weight vector α is
learnable parameters. For learning it, we first concatenate the
7 modified modality encodings, and pass it to a 1-layer neural
network whose output layer is a 7-unit softmax layer. We use
softmax layer as its outputs. We use this specific activation
function because the outputs are values which sum to 1, which
in our use case represent the weightage or importance of a
given modality, in the fused representation. We observe that
the textual modality is usually given high weight, which is
suggestive of the fact that it plays the most important role
among all the modalities, for estimating the PHQ-8 score. See
Figure 1 for a visual representation of the modality fusion
network. Note that this sub-network is the same for all of
the Genless, Genconcat and Genpred networks. Also note that
we have fixed the hyperparameter values after performing an
extensive grid search over the hyperparameter space, and chose
those which gave the best performance on the validation set.

3) PHQ-8 score estimator: This is a relatively straight
forward neural network with 1 hidden layer, conditioned on
the fused encoding F. We feed the fused encoding F from
the modality fusion sub-network to a fully connected layer.
The output of this layer is then fed to a linear regression unit,
which outputs the predicted PHQ-8 score. This sub-network
too is the same for all three Genless, Genconcat and Genpred
networks.

B. GenSP and GenASP

We use multitask learning approach at individual modality
level only. We combine the individual modalities to estimate
the PHQ-8 score, and for realising this, we use the same
modality fusion sub-network and PHQ-8 score estimator as
described in the previous sections.
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Fig. 1. Modality fusion sub-network. The blue boxes represent vectors (either
the input to, or the output from the neural network layers), and the yellow
boxes represent the neural network layers.

GenSP and GenASP are multitask learning networks. The 2
tasks in our context are depression detection for males and
females. The intuition behind the experiments with these two
architectures is that although there might be many commonal-
ities in detecting depression in males and females, we believe
that there may be some differences, and that simultaneously
learning to detect depression for these two genders may
improve the performance on these two tasks.

GenSP is a general shared-private multitask learning archi-
tecture. We describe it briefly in this section. The ideas behind
GenASP have been derived from Liu et al [35], and have
been used by Qureshi et al [39] for concurrently estimating
depression and emotion intensity.

1) GenSP: The GenSP multitask neural network is made
up of 3 LSTM layers - 2 networks specific to the tasks (the
tasks are: depression detection in males, and in females), and
1 network for the combined (shared) task. Each of these layers
have the same number of neurons. In particular, the input
belonging to a particular task is passed on to the shared LSTM
layer, and the LSTM layer corresponding to that task. The
output vectors from these layers are combined to get a vector.
This combination is done using a technique similar to the
modality fusion sub-network which is discussed briefly in the
following paragraph. The combined vector is then passed on to
a dense layer, whose output is in turn passed on to the output
layer specific to the task.

For fusing the outputs from the shared and task-specific
LSTMS in the fusion sub-network, we append them vertically,
and feed this concatenation to a dense layer, whose output is
in turn passed on to a softmax layer. This softmax layer gives
two numbers: αshared and αtask. These numbers are the weights
for the outputs of the shared LSTM layer and the task-specific
LSTM layer respectively, in calculating the final output, where

we take the weighted average of the two LSTM layer outputs.
We were particular about including the attention mecha-

nism, so that we could better comprehend the importance
of the shared and task-specific features, while making a
prediction. For predicting the PHQ-8 score, if it is the case
that task-specific embeddings provide less information than the
shared embeddings, then αtask would be lesser than 0.5, and
αshared would have a greater value than 0.5. This mechanism
allows the neural network to learn the contributions of the task-
specific and shared embeddings, for the final task of estimating
depression level. In addition, it is a well founded fact that
neural networks with attention usually perform well, when
compared to their counterpart with no attention [30].

The network architecture described above, which is also
shown in Figure 2 lays out an infrastructure which has distinct
vector spaces for shared features and the features specific to
the task. But it is found that this architecture too has it’s own
lacunae. The feature space of the shared task could have some
needless features specific to the task, and some shared features
may creep into the feature space specific to the task. Such a
network is prone to suffer from feature redundancy, as depicted
on the right half of figure 2. To circumvent this issue, we test
the GenASP. It is discussed in the coming section.

2) GenASP: We take inspiration from the findings of [31],
[32] and develop a modified architecture with two changes.
Just like in GenSP, there are 3 LSTM layers in the GenASP
neural network, 2 specific to the task and 1 shared. And just
like the case in GenSP, all the three layers have the same
number of neurons. A task’s input vector is passed on to
both the shared and the task-specific LSTM layers. Using the
same attention fusion mechanism as described in the previous
section, the output vectors from the shared and the task-
specific layers are fused.

However, unlike GenSP, before the fusion takes place, the
output of the shared LSTM layer is fed to a dense layer with
softmax activation. The output of this dense layer is the task
label prediction (if t1 and t2 are two tasks at hand, the label
for t1 is [1, 0], and the label for t2 is [0, 1]). Observe that the
shared-LSTM layer and dense layer with softmax activation
act as the generator-discriminator networks of an adversarial
network, where the dense softmax layer is the discriminator
and shared-LSTM layer, the generator. This makes sure that
the shared space contains only the shared features.

But how do we make sure that the shared features don’t
creep into the task-specific vector spaces? We have the Ldiff to
handle this. The value of Ldiff objective function is computed
using the output vectors of the shared and the task-specific
LSTM layers. This acts as an orthogonality constraint, making
sure that the output from the task-specific layer is as orthog-
onal to the shared LSTM layer output as possible. We have
used a slightly different definition for Ldiff; it is not the one
used by [31] or [32]. Ldiff is defined in Equation 1. Here, ‖v‖1
is the L1 norm of v, H and S are two matrices whose rows are
the output vectors from all the time-steps of the task-specific
and the shared LSTM layers respectively. m, n are the row
and column dimensions of H>S respectively. We chose this
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variation of Ldiff after thoroughly experimenting with different
alternatives. The full network diagram is shown in figure 3.

Ldiff =
‖H>S‖1
m× n

(1)

This architecture makes sure that the shared and the task-
specific spaces are as distinct as possible, as seen in the right
half of Figure 3. As mentioned earlier, the addition of the
adversarial network (shared LSTM layer - dense softmax layer
pair) discards the chance of features specific to a task crawling
into the shared vector space. And the orthogonality constraint
makes sure that these two spaces are as orthogonal as possible
(they are fully orthogonal when Ldiff is 0). This implies that
the task-specific vector space would not have any of the shared
features, as these two spaces should be orthogonal. Keep in
mind that if the two tasks are very similar and correlated,

GenASP is bound to perform badly, as it would be challenging
for the shared-LSTM layer (the generator) to generate an
encoding that can truly fool the discriminator and make it
classify poorly.

V. RESULTS AND DISCUSSION

Results are presented in Table I. The first observation
that we make from the results is that gender-aware models
(Genconcat, Genpred, GenSP and GenASP) tend to perform better
on estimation of depression that the gender-unaware model
(Genless). For each of the 7 modalities, we obtain better mean
squared error (MSE) values by using one of Genconcat, Genpred,
GenSP and GenASP. This is a strong corroboration to the
hypothesis that gender information substantially improves the
performance of depression severity estimation.



TABLE I
RESULTS OF ALL THE 5 MODELS. MSE: MEAN SQUARED ERROR. MAE: MEAN ABSOLUTE ERROR.

Models Evaluation Metrics
Genless Genconcat Genpred GenSP GenASP

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
COVAREP 44.98 5.32 44.59 5.16 43.05 5.14 43.70 5.11 44.13 5.14
Formant 43.11 5.48 42.21 5.50 42.29 5.54 42.53 5.56 41.96 5.19
Facial action units 42.32 5.51 41.97 5.13 41.06 5.47 41.90 5.15 41.97 5.21
Eye gaze 47.26 5.57 47.04 5.62 46.05 5.75 48.01 5.72 44.41 5.23
Facial landmarks 52.82 6.21 50.72 6.06 52.45 5.93 47.16 5.87 45.13 5.51
Head pose 48.99 5.78 47.31 5.74 46.92 5.76 46.56 5.54 44.29 5.40
Text 23.82 3.78 23.28 3.87 23.12 3.87 24.12 4.10 24.02 4.09
Multimodal 24.12 3.74 20.06 3.50 20.56 3.50 21.01 3.51 22.25 3.49

A simple concatenation of gender binary value does not
seem to help in improving the estimation of depression at
individual modalities level. Indeed, Genconcat does not have the
best MSE values for any of the 7 individual modalities, and
only shows improved results for the mean average error (MAE)
within a unique case. However, Genconcat seems to be the best
performing model in terms of MSE when all modalities are
merged together (MSE: 20.06) with very close values of MSE,
compared to the second best (Genpred, MSE: 20.56). This is
an anomaly, and we attribute this deviation in trend to the less
amount of data that we have. However, the general trend that
follows in all other modalities is that concatenation of gender
binary can only help so much.

We also observe that a multitask learning approach on
depression estimation and gender detection helps in improving
the performance on the first task. For COVAREP, facial action
units, and text modalities, Genpred has the lowest mean squared
error (43.05, 41.06, and 23.12 respectively), and for the
multimodal model, it has the second lowest mean squared
error. We do not analyse if depression estimation helps the
performance on gender classification; it is out of the scope of
our work.

Among GenSP and GenASP, the latter has the lowest mean
squared error for 4 out of 7 modalities. It is a strong indica-
tion that detecting depression in men is different than doing
the same for women, when using Formant, eye gaze, facial
landmarks or head pose features; women tend to display a
different head movement, eye gaze turns and facial expression
changes than men, in the context of depression. No strong
conclusion can be made for the other three modalities, where
Genpred shows the least mean squared error.

The text modality is the best marker of depression, as the
mean squared and mean absolute errors are consistently lower
than all other modalities. However, we observe that GenSP and
GenASP both have higher mean squared error values (24.12
and 24.02 respectively), when compared to Genpred (23.28),
hinting that both the genders may use sentences with similar
meanings, in the context of depression. We also find that
the multimodal combination of all the modalities gives the
best mean squared error (which happens for Genconcat, MSE:
20.06), further corroborating the findings of Qureshi et al.
[38].

VI. CONCLUSION

We hypothesize that gender information may play an im-
portant role in the estimation of depression. To verify the hy-
pothesis, we designed 1 gender-unaware model (Genless), and
4 gender-aware models (Genconcat, Genpred, GenSP, GenASP),
and trained them on the task of depression estimation. From
the results, we find that indeed gender information improves
the performance of depression estimation, although a simple
concatenation of gender binary might not be enough at modal-
ity level. We also find that for 3 of the modalities (COVAREP,
facial action units, text), simultaneously learning to predict
gender makes depression estimation more accurate. Lastly,
depression estimation using the other 4 modalities (Formants,
facial landmarks, eye gaze and head pose) is different for
males and females.
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