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Abstract—Depression is considered a serious medical condition and a large number of people around the world are suffering from it.
Within this context, a lot of studies have been proposed to estimate the degree of depression based on different features and
modalities, specific to depression. Supported by medical studies that show how depression is a disorder of impaired emotion
regulation, we propose a different approach, which relies on the rationale that the estimation of depression level can benefit from the
concurrent learning of emotion intensity. To test this hypothesis, we design different attention-based multi-task architectures that
concurrently regress/classify both depression level and emotion intensity using text data. Experiments based on two benchmark
datasets, namely, the Distress Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ), and the CMU Multimodal Opinion Sentiment
and Emotion Intensity (CMU-MOSEI) show that substantial performance improvements can be achieved when compared to
emotion-unaware single-task and multi-task approaches.
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1 INTRODUCTION

Depression is a common mental disorder that causes
people to experience depressed mood, loss of interest or
pleasure, feelings of guilt or low self-worth, disturbed sleep
or appetite, low energy, and poor concentration [1]. It is the
predominant mental health problem worldwide, followed
by anxiety, schizophrenia and bipolar disorder [2]. In 2013,
depression was the second leading cause of years lived with
a disability worldwide, and in 26 countries, depression was
the primary driver of disability [2]. More than 300 million
people are now living with depression, an increase of more
than 18% between 2005 and 2015.1

Depression lasts between 4 and 8 months on average and
can actually change one’s ability to think, impair attention
and memory, as well as debilitate information processing
and decision-making skills. It can also lower one’s cognitive
flexibility and executive functioning. As a consequence, in
extreme cases, depression may be characterized by thoughts
of death and suicide. Approximately 800,000 people suffer-
ing from depression die due to suicide yearly and the annual
number of death cases due to depression is on the rise.2

There are many possible causes of depression, including
faulty mood regulation (for example, inability to deal with
failure and rejection), genetic vulnerability, stressful life
events (for example, divorce, death of a family member,
childhood trauma), and medical problems. It is believed that
several of these forces interact to bring on depression [3].

A depression diagnosis is often difficult to make because
clinical depression can manifest in many different ways. Ob-

. Corresponding Author: Gaël Dias (Email: gael.dias@unicaen.fr).
1. A statistic reported by the World Health Organization, available at

https://bit.ly/2rsqQoP.
2. A study by Hannah Ritchie and Max Roser in 2018, available at

https://bit.ly/2mnyVZ6.

servable or behavioral symptoms of clinical depression also
may sometimes be minimal despite a person experiencing
profound inner turmoil. Diagnosis of depression has tradi-
tionally been made based on clinical criteria, including pa-
tient current symptoms and history. This process is widely
used but relies on subjective interpretation. To standardize
both the data obtained and data interpretation, various
interview-based instruments and non-interview methods
exist for screening and testing for depression in various
clinical settings [4]. In particular, interview-based screening
tools include the Hamilton Depression Rating Scale (HDRS),
the Beck Depression Inventory (BDI), the Center for Epi-
demiologic Studies Depression Scale (CES-D), the Hospi-
tal Anxiety and Depression Scale (HADS), and the Mont-
gomery and Asberg Depression Rating Scale (MADRS).3

The Patient Health Questionnaire (PHQ) [5] has been
established as a valid diagnostic and severity measure for
depressive disorders [6]. In particular, PHQ-8 contains eight
questions, whose answers range from 0 (not at all) to 3
(nearly every day), to provide an overall mark between
0 and 24, that estimates the level of depression. Different
versions of the PHQ exist, such as PHQ-8, PHQ-9 and PHQ-
15, containing 8, 9 and 15 questions respectively. The PHQ-9
is the most widely used questionnaire [6], but researchers
generally use PHQ-8, which consists of all the PHQ-9
questions except for the last one (a question on suicidal
thoughts). The absence of the ninth question has little effect
on scoring between the PHQ-8 and PHQ-9. Studies found
that scores between the two tests are highly correlated [7].

However, filling these forms is a tedious task that can be
perceived as insuperable by many patients, thus leading to a

3. Recommendation of the French Haute Autorité de la Santé For
more information, go to https://bit.ly/2EaOs92.



great deal of medically unfollowed patients. Moreover, due
to the increasing number of patients suffering from mental
health diseases, the average time for a medical consultation
has drastically decreased over the last decade, leading to
both patients’ and therapists’ frustration and limiting the
number of interview-based screening acts.

Effective treatments for depression are available, how-
ever, only fewer than half of those affected in the world
undergo with such treatments. In some countries, this num-
ber can go down to less than 10%. Possible reasons for
this may be lack of resources, lack of trained health-care
providers, social stigma associated with mental disorders
and also an inaccurate assessment. Simultaneously, people
who are depressed may not be correctly diagnosed, and oth-
ers who do not have the disorder are too often misdiagnosed
and prescribed antidepressants. The above facts prove that
there is a steadily increasing global burden of depression
and mental illness. Thus development of more advanced,
personalized and automatic technologies for the detection
and estimation of depression is highly essential.

In order to help therapists in their diagnosis, a great deal
of studies have been proposed for the automatic estimation
of depression level based on different features over various
modalities, such as text, vision and acoustics [8], [9], [10]. All
these methodologies focus on the improvement of single-
task learning models, trying to increase the performance
by better characterizing depression itself. However, some
studies in mental health have shown that depression is
a disorder of impaired emotion regulation [11], [12]. In
particular, patients with major depression are often unable
to control their emotional responses to negative situations,
and overuse emotional expressions of sadness, disgust or
fear. As a consequence, we hypothesize that the estimation
of depression level can benefit from the concurrent learning
of emotion intensity, which can be evaluated on a [0,3]
scale for the six emotions of Ekman [13] - happiness,
sadness, anger, fear, disgust and surprise. So, we propose
to use the text data provided in the interviews of the
different datasets (depression and emotion) to concurrently
estimate depression level and emotion intensity, expecting
that both tasks have common backgrounds and can boost
performance over single-task processing. For illustration,
we show below sentences that are indicative of depression.

Interviewer: ”How easy was it for you to get used to living in
Los Angeles?”
Participant: ”It was not easy for me. It took about three years.”
Interviewer: ”Can you tell me about that?”
Participant: ”Umm... just the move. I moved away from my
family so I was uncomfortable. I didn’t know anyone here and
even though I did make friends I just felt out of place.”

To test our hypothesis, we particularly explore
three different multi-task architectures that concurrently
regress/classify both depression level and emotion inten-
sity using textual modality exclusively. Thus, (1) the fully-
shared, (2) the shared-private and (3) the adversarial shared-
private models are designed, following the ideas of [14].
However, we include an attention layer in the last two
models, to let the network decide by itself the weights
of the private and shared representations in the decision

process. We extend the multi-task architectures to three
tasks, which include depression level regression, depression
level classification4 and emotion intensity regression, thus
extending the ideas of [15], who have shown that depression
level classification and depression level regression can be
complementary in the decision process.

An exhaustive series of experiments using these models
are carried out using two benchmark datasets: the Distress
Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ)
[16], and the Carnegie Mellon University - Multimodal
Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
[17]. Although both datasets contain multimodal (text, vi-
sion, acoustics) information, we exclusively focus on the
text modality, as [9] showed that lexical models perform
reasonably well to monitor depression level. Overall results
for both depression level classification and regression show
that notable performance gains can be obtained by emotion-
aware models, when compared to emotion-unaware single-
task (ST) and multi-task (MT) baseline approaches.

With such studies, we expect that in a near future sys-
tems can be built that automatically detect depression, thus
playing a great role in supporting the therapist’s diagnosis.
Such applications may also help in early detection of clinical
depression by suggesting the sufferer to consult a psychia-
trist. We anticipate that our work may reduce cases of late
treatment for clinical depression.

2 RELATED WORKS

Due to the impulse for the development of automatic tech-
nologies that can aid the detection of mental health disor-
ders, a great deal of research studies in Computer Science
have been emerging over the past few years [18]. Within
this particular context, the automatic detection of depression
level has received major focus.

Initial initiatives targeted the understanding of relevant
non-verbal descriptors that could be used in machine learn-
ing frameworks such as gaze, smile, self-touches and heart-
rate descriptors [19]. Other non-verbal descriptors include
acoustics. Within this context, [8] focused their research on
finding how common paralinguistic speech characteristics
are affected by depression, namely prosodic, source, for-
mant and spectral features. With respect to verbal descrip-
tors, [20] hypothesized that researchers should look beyond
the acoustic properties of speech and build features that
capture syntactic structures and semantic contents. Follow-
ing these ideas, [9] showed that classification performance
suggests that lexical models are reasonably robust to play
an important role in the diagnosis and monitoring of depres-
sion. But, the analysis also suggests that users may be able to
fool algorithms by avoiding direct discussion of depression.
Some other interesting work directions using text features
include the study of social media [21], eventually using
specific corpora tuned for such tasks [22].

More recently, new solutions proposed to combine ver-
bal and non-verbal descriptors (or modalities) within a sin-
gle learning model [10], [23]. Although the idea is seducing
as it can be viewed as a way of avoiding fooling behaviors,
the first results were mitigated [24]. But, recent studies [25]

4. For that purpose, discretization follows medical scales.



evidence successful results. It is also interesting to notice
that non-Deep Learning approaches have been proposed but
with less successful results [26]. This may suggest that Deep
Learning techniques are able to capture high-level features
and long-term dependencies at levels not seen before.

All previous related works focus on finding better de-
scriptions of depression characteristics based on verbal
and/or non-verbal indicators. In this paper, we aim to in-
vestigate the effect of simultaneously learning related tasks
such as depression level and emotion intensity estimation.
As stated in the study of [27], simultaneous learning of
every task combination is not beneficial, but, tasks having
cognitive similarities often get benefited from concurrent
learning. In recent years, multi-task learning frameworks
have become powerful in solving different NLP tasks [27],
[28]. The possible reasons for this success (i.e. learning
the decision boundaries of related tasks) are : (1) knowl-
edge transfer across tasks in the form of generating more
robust representations and (2) the use of more training
data. In [29], it has also been discussed that multi-task
learning can act as a regularization process which avoids
overfitting by maintaining competitive performance across
different tasks. In particular, a multi-task framework has
recently been proposed by [15] who explore in concurrently
learning depression level classification and regression. In-
spired by the success of such models, we propose to com-
pare three multi-task learning models (fully-shared, shared-
private and adversarial shared-private) that combine three
concurrent tasks: depression level classification, depression
level regression and emotion intensity regression. Indeed,
as depression can be viewed as the impaired regulation of
emotion intensity, it is likely that better models can be built
based on the concurrent learning of depression level and
emotion intensity estimations.

3 METHODOLOGY

In order to estimate the level of depression and the intensity
of emotions concurrently, we propose three different multi-
task architectures that take as input the transcript files from
the DAIC-WOZ [16] and the CMU-MOSEI datasets [17].
These datasets are described in detail in section 4. In the
following subsections, we describe the tasks to be handled,
the preprocessing steps and the multi-task architectures.

3.1 Learning Tasks
In this section, we define the three tasks used in our
experiments: depression level regression, depression level
classification and emotion intensity regression.

Depression Level Regression (DLR). Given the interview
transcript associated with a patient, we predict its PHQ-8
score. This can be modeled as a simple regression task,
where a score in the range of [0-24] must be predicted.

Depression Level Classification (DLC). In this task, we
discretize the PHQ-8 score, which ranges from 0 to 24,
into five classes of equal length: [0-4], [5-9], [10-14], [15-19],
and [20-24].5 We now treat this problem as multi-class

5. More details about this process are given in section 4.

classification, where a class is predicted given the interview
transcripts. Note that this task is highly correlated to DLR.

Emotion Intensity Regression (EIR). In the CMU-MOSEI
dataset, the emotion intensity is labeled at sentence-level, in
contrast to transcript-level for depression estimation. Each
sentence has a 6-D vector label, that contains scores in the
range [0-3], for the six Ekman’s emotions.6 Note that in this
dataset, many of the transcripts do not have labels for all its
sentences. For such transcripts, we append a 0 on top of the
labels of all the labeled sentences (representing that some
emotion is exhibited in the utterance), and we manually
label all the unlabeled sentences with [1,0,0,0,0,0,0], where
1 denotes that no emotion is exhibited in the utterance.
As such, each sentence is labeled by a 7-D vector. If there
are T sentences in a transcript, its label matrix is of 7×T
dimension. So, given the monologue transcript, we must
predict this 7×T matrix.

3.2 Sentence Preprocessing and Encoding
The initial step of our methodology aims to preprocess and
encode each sentence of the respective transcripts.

Sentence Preprocessing. In DAIC-WOZ, many participants
speak colloquially. So, we formalize all utterances by
replacing contractions with corresponding full words. The
sentences may also contain filler words such as “umm” or
“hmm”. We let them remain unchanged, as they may be
important features to estimate depression. No preprocessing
was required for the sentences in CMU-MOSEI, as they are
already clear and formal.

Sentence Encoding Network. Inspired by the success of the
universal sentence encoder [30] in finding semantic similar-
ity between two sentences, we use its transformer variant to
encode the sentences of the transcripts. It encodes a sentence
using the encoding sub-graph of the transformer architec-
ture. This sub-graph uses attention to compute context-
aware representations of words in a sentence that take
into account both the ordering and the identity of all the
other words. The context-aware word representations are
converted to a fixed-length sentence encoding vector by
computing the element-wise sum of the representations at
each word position. The encoder takes as input a lower-
cased Penn Treebank tokenized string and outputs a 512
dimensional vector as the sentence embedding. As there
are different numbers of sentences in different transcripts,
we left-pad all the transcripts with 512-D zero-vectors, to a
common length.

3.3 Learning Architectures
We describe three different multi-task models with respect
to three tasks DLR, DLC and EIR. The three multi-task
models are the Fully-Shared (FS MT.), the Shared-Private
(SP MT.), and the Adversarial Shared-Private (ASP MT.).
Each of the multi-task architectures has been designed for a
combination of DLR, DLC and EIR, which are DLR-DLC,
DLC-EIR, DLR-EIR and DLR-DLC-EIR. Note that the

6. Further details of the dataset are given in section 4.



inputs of each model are the encoded sentences. We also
implement a series of single-task models (ST.) for each of
DLR, DLC and EIR.

Single-Task (ST.). The single-task model consists of a one-
to-one Long Short Term Memory (LSTM) network [31],
that encodes the transcript. The LSTM unit was chosen as
the recurrent unit because it is very efficient in modeling
long dependencies in time series data. In particular, LSTM
networks are a special kind of recurrent neural network
capable of learning long-term dependencies. As stated by
[32], LSTM networks are the state-of-the-art structures for
NLP tasks, as they have the ability to retain data through
many time steps, a feature which no other deep neural
networks have.

The output from the LSTM network (which may be
the individual outputs of all sentences7 or the sum of the
outputs from all the LSTM units8) is fed to a set of fully
connected and dropout layers. The output representation is
then passed on to one or more (depending upon the task)
linear regression units, in case the task is regression, or to a
softmax classifier, in case the task is classification.

Fully-Shared Multi-Task (FS MT.). The fully-shared multi-task
model consists of one LSTM network, that acts as the shared
space for all the tasks. The outputs (or their summation,
for DLC and DLR) from this LSTM network are fed to a
task-specific network of fully connected and dropout layers.
The representation obtained from this network is passed on
to the output layer, which is a single linear regression unit
for DLR, a 5-class softmax layer for DLC, or a layer of 7
regression units, in case the task is EIR.

This architecture forces the LSTM network to learn
both the shared and task-specific features, as shown on
the right side of Figure 1. Indeed, it does not have any
facility to separate both shared and private spaces. The
main drawback of this architecture is that it is bound to fail
for increasingly less-correlated pairs of tasks, as the LSTM
network is likely to fail to capture the task-specific features
of all the tasks, if they are not enough correlated. However,
in case tasks are heavily correlated, this network is expected
to perform well.

Shared-Private Multi-Task (SP MT.). The shared-private multi-
task model consists of three LSTM networks - two task-
specific and one shared. All of the networks have the same
number of units. In particular, the input of a task is fed to
the task-specific and the shared LSTM network. The outputs
from the task-specific and the shared LSTM layers are fused
using an attention fusion mechanism [33], to obtain a fusion
vector. The attention fusion network is explained further in
this section. This fusion vector is then fed to a network of
fully-connected and dropout layers, whose output is fed to
the task-specific output layer.

This architecture, presented in Figure 2, improves over
the fully-shared multi-task architecture by providing an
infrastructure that has separate spaces for task-specific
and shared features. But this too may have drawbacks.

7. This is the case for EIR as labels are given at sentence level.
8. This is the case for DLR and DLC as labels are given at text level.

The shared feature space could contain some unnecessary
task-specific features, while some shared features could also
be mixed with the private space, thus suffering from feature
redundancy as shown on the right side of Figure 2.

Adversarial Shared-Private Multi-Task (ASP MT.). Inspired by
the results obtained by [14], [28], we design a similar ar-
chitecture with two modifications. The adversarial shared-
private multi-task architecture consists of three LSTM net-
works, that is, two task-specific and one shared, all of which
have the same number of units. The input of a task is
fed to the task-specific and the shared LSTM networks.
The outputs from the task-specific and the shared LSTM
layers are then fused using the attention fusion mechanism,
oppositely to [14], [28], who use concatenation.

The output from the shared LSTM layer is also fed to a
network ND of fully-connected dropout and softmax layers.
This network outputs the task label (for example, if there are
two tasks T1 and T1, the task label for T1 is [1, 0], the task
label for T2 is [0, 1]). The shared LSTM layers and ND act as
an adversarial network, the shared LSTM layer acting as the
generator and ND acting as the discriminator.

Finally, a Ldiff loss function acts as an orthogonality
constraint between private and shared layers and differs
from the one used in [14], [28]. It is defined in Equation 1,
where ‖.‖1 is the L1 norm, H and S are two matrices, whose
rows are each unit output of the task-specific LSTM network
and the shared LSTM network, respectively, and m and n
are the first and second dimensions of H>S respectively.
This definition of Ldiff was empirically settled after testing
other definitions. The architecture is shown in Figure 3.

Ldiff =
‖H>S‖1
m× n

. (1)

This architecture ensures that the task-specific and
shared spaces are as separate as possible, as shown on the
right side of Figure 3. The introduction of the adversarial
network (shared LSTM - ND pair) removes the possibility of
task-specific features creeping into the shared-LSTM space.
The orthogonality constraint ensures that the task-specific
and shared spaces are as orthogonal as possible, which
means the task-specific LSTM space should not contain any
of the shared features as its space should be orthogonal to
the shared LSTM space. Note that when the tasks are highly
correlated, this architecture tends to perform poorly, as it
would be very tough for the shared LSTM (generator) to
create such a representation that can fool ND (discriminator).

Attention Fusion Network (AFN.). In attention fusion, we
first concatenate the outputs from the task-specific and the
shared layers, pass them to a network of fully-connected
and dropout layers, the output of which is passed to a
softmax layer. This softmax layer outputs two values: αtask
and αshared, which weight the task-specific LSTM network
and the shared LSTM network, respectively, in calculating
the final output. So, αtask is multiplied with the output of the
task-specific LSTM network, αshared is multiplied with the
output of the shared-LSTM network, and the correspond-
ing products are summed. This summation represents the
fusion vector. The attention fusion network is shown in 4.



Fig. 1. Fully-Shared Multi-task model (FS MT.). FCN stands for Fully Connected Network, EIR for Emotion Intensity Regression and DLC (resp.
DLR) for Depression Level Classification (resp. Depression Level Regression).

We particularly included the attention mechanism
to better understand the behavior of each of the task-
specific and shared features in the decision process. For
estimating depression, if task-specific embeddings are
more important than the shared embeddings, then αtask
would have a value greater than 0.5, and αshared would
be less than 0.5. This would allow the network to learn
the importance of the shared and task-specific embeddings
by itself, in order to estimate depression/emotion levels.
Moreover, networks with an attention mechanism usually
perform better than their counterpart without attention [34].

Three-task Architectures. The definition of multi-task ar-
chitectures that contain more than two tasks (here
DLC+DLR+EIR) may not be straightforward in all cases.
In the case of the fully-shared model, the definition is
simple. Each task is solved using the single shared LSTM
layer. With respect to the shared-private and the adversarial
shared-private models, different strategies are possible. In
our case, we take advantage of previous findings, namely
that highly related tasks should perform better when fully-
shared architectures are used. So, as DLC and DLR are
highly correlated, we choose to combine them using a fully-
shared architecture and combine the pair of tasks with EIR
using the other two possible architectures (SP MT. and
ASP MT.). The architecture for ASP MT. on three tasks is
shown in Figure 5, and the SP MT. architecture can easily
be inferred from the same illustration, by removing the
discriminator and the orthogonality constraints.

4 DATASETS AND LEARNING SETUPS

In this section, we present two benchmark datasets, namely
DAIC-WOZ for depression estimation and CMU-MOSEI
for emotion intensity detection, as well as we define the
learning setups of our different architectures.

4.1 DAIC-WOZ Dataset

The DAIC-WOZ depression dataset9, that is used in the
current study, is a subset of the DAIC corpus [16] con-
taining clinical interviews of situations of psychological
distress, which was generated by scientists from University
of Southern California. These interviews were taken by a
computer agent controlled by a human (wizard-of-oz virtual
interviewer) who interacted with common people asking
about their mental states and identified different verbal and
non-verbal indicators for the same. The audio and video
recordings and extensive questionnaire responses from the
interviews are a part of the dataset. The data is annotated
with a variety of verbal and non-verbal features.

189 sessions of dialogues are in the dataset, out of which,
45 are affiliated with the official test split, whose labels are
not given. Out of the remaining 144, 6 of them were rejected
as they had partial recording and interruptions, prompting
to a final number of 138 samples. The accompanying fea-
tures are (1) a raw audio document of the dialogue session
combined with its transcript, (2) files gathering coordinates
of 68 facial indicators, the histogram of oriented gradients

9. http://dcapswoz.ict.usc.edu/.



Fig. 2. Shared-Private Multi-task model (SP MT.). AFN refers to Attention Fusion Network, FCN to Fully Connected Network, EIR to Emotion
Intensity Regression and DLC (resp. DLR) to Depression Level Classification (resp. Depression Level Regression).

(HoG) characteristics of the face, head pose and gaze direc-
tionality characteristics (extracted with OpenFace [35]), (3) a
document containing the continuous facial activity units ex-
tracted with CERT [36], and (4) files with the COVAREP and
formant voice characteristics computed with the COVAREP
sotware [37].

As we are only focusing on the text modality, we only
retain the transcript files that contain the sentences spoken
by the virtual interviewer and the participant. The class-
wise distribution of our training, development and test
splits is summarized in Table 1. Note that medical studies
[38] state that a PHQ-9 score in the interval [0-4] stands for
None-minimal depression, in [5-9] for Mild, in [10-14] for
Moderate, in [15-19] for Moderately severe, and in [20-27]
for Severe depression. In the particular case of the PHQ-8
score, one question about suicidal condition is missing. As
a consequence, the exact same discretization can be used,
where severe depression is in the range of [20-24].

TABLE 1
Distribution of the DAIC-WOZ dataset by depression class.

Class Train + Dev. Test
None-minimal - [0-4] PHQ-8 score 47 16
Mild - [5-9] PHQ-8 score 28 5
Moderate - [10-14] PHQ-8 score 19 5
Moderately severe - [15-20] PHQ-8 score 7 6
Severe - [20-24] PHQ-8 score 4 1

The DAIC-WOZ dataset, however, has some limitations.
The number of samples in the entire dataset is small and not
evenly distributed, with just one sample of the “severely de-
pressed” category in the test set. It is clear that further efforts
are needed to increase such a dataset, although this remains
out of the scope of this paper. In all cases, all obtained results
of our study will have to be put in perspective relatively to
this small amount of learning instances.

4.2 CMU-MOSEI Dataset
The CMU Multimodal Opinion Sentiment and Emotion
Intensity (CMU-MOSEI) dataset10 comprises 3,228 videos
from 1,000 different speakers over 250 topics [17]. The
videos were gathered from an online video platform, where
users emit their opinions in the form of monologues. Each
video contains a unique person, who discusses in front of
the camera about a given topic. Each video can be trans-
formed into three information sources: language (spoken
utterances), visual (gesture analysis), and acoustics (intona-
tions and prosody). During data acquisition, videos were
analyzed by automatic face detection to verify whether a
unique speaker is present. Moreover, only the videos where
the speaker’s attention is exclusively towards the camera
were kept. The number of videos acquired from each chan-
nel was restricted to 10 to avoid bias and all videos must
have correct transcriptions provided by the speaker. The

10. https://github.com/A2Zadeh/CMU-MultimodalSDK.



Fig. 3. Adversarial Shared-Private Multi-task model (ASP MT.). AFN refers to Attention Fusion Network, FCN to Fully Connected Network, EIR to
Emotion Intensity Regression and DLC (resp. DLR) to Depression Level Classification (resp. Depression Level Regression).

Fig. 4. Attention Fusion Network (AFN).

quality inspection has been made by 14 expert judges, and
3,228 videos were selected from the 5,000 initially gathered.

The 3,228 videos were then segmented into 23,453 an-
notated pieces, where each segment contains a manual
transcription aligned with audio to phoneme level. The
annotation of CMU-MOSEI closely follows the annotation

rules of the CMU-MOSI [39] dataset. In particular, sentences
were annotated for Ekman’s six emotions, that is happiness,
sadness, anger, fear, disgust and surprise, on a [0,3] Likert
scale for the presence of emotion. As such, 0 stands for no
evidence of x, 1 for weakly x, 2 for x, and 3 for highly x.
With respect to sentiment evaluation, a [-3,3] Likert scale
was used such that: -3 is highly negative, -2 is negative, -1
is weakly negative, 0 is neutral, 1 is weakly positive, 2 is
positive, and 3 is highly positive. Note that in this paper,
we do not use the annotation for sentiment evidence. As
stated in [17], the annotation was carried out by 3 crowd-
sourced judges from Amazon Mechanical Turk platform,
where judges were provided with a 5 minutes training video
on how to use the annotation system in order to avoid
extreme annotation, and all judges were master workers
with an approval rate higher than 98%.

Note that as in CMU-MOSEI each of the 3,228 video tran-
scripts contains an average of 7.3 utterances, and in DAIC-
WOZ, the 138 interview transcripts contain an average of
90 utterances, we randomly selected 517 transcripts from
CMU-MOSEI to reduce imbalance between datasets.

4.3 Learning Setups
With respect to multi-task learning, the task-specific LSTM
layers are trained alternatively using the entire training
split. As an example, consider the training of the shared-
private multi-task network for depression level regres-
sion and emotion intensity regression: SP MT. DLR+EIR.



Fig. 5. Adversarial Shared-Private Multi-task model (ASP MT.) for three tasks. AFN refers to Attention Fusion Network, FCN to Fully Connected
Network, EIR to Emotion Intensity Regression and DLC (resp. DLR) to Depression Level Classification (resp. Depression Level Regression).

The DLR-specific LSTM layer, the shared-LSTM layer, and
the corresponding attention fusion network and fully-
connected network are trained for NDLR epochs without
updating the weights of the EIR-specific layers. For the next
NEIR epochs, the EIR-specific LSTM layer, the shared-LSTM
layer, and the corresponding attention fusion network and
fully-connected network are trained without updating the
weights of the DLR-specific layers. Here, NDLR and NEIR

are treated as hyperparameters. We go on training the
network in this alternating fashion till a maximum number
of iterations Ntotal (the total number of times the shared-
LSTM layer is trained) is reached. The model that shows best
performance on the development split over all iterations
is chosen for testing. The pseudo-code for our training
procedure is shown in algorithm 1.

Algorithm 1 FS/SP/ASP MT. T1+T2 training
1: ntotal ← 1
2: while ntotal < Ntotal do
3: for nT1

← 1 to NT1
do

4: Update T1-specific and Shared weights
5: ntotal ← ntotal + 1

6: for nT2 ← 1 to NT2 do
7: Update T2-specific and Shared weights
8: ntotal ← ntotal + 1

The architectures have been implemented with Keras11

11. https://keras.io.

and hyperparameters have been optimized through grid
search. Note that all learning models are trained on the basis
of stratified 5-cross validation, thus keeping the data distri-
bution between training, development and test datasets. In
particular, the best of the 5 models over the development set
is applied to classify/regress the examples in the test set.

5 RESULTS

In order to test our hypothesis, we perform a series of
experiments for three different tasks: (1) Depression Level
Regression (DLR), which aims to assign a value between 0
to 24 (that is, the PHQ-8 score) to a given patient interview
transcript, (2) Depression Level Classification (DLC), whose
objective is to identify the correct discrete class of depression
level (None-minimal, Mild, Moderate, Moderately severe,
Severe), and (3) Emotion Intensity Regression (EIR), which
regresses a [0-3] value for each of the six Ekman emotions
(happiness, sadness, anger, fear, disgust and surprise) for a
given user transcript.

Five different models serve as baselines. That is,
each task is first modeled as a single-task problem, and
two unaware-emotion multi-task (fully-shared and shared-
private) architectures are implemented that combine both
DLR and DLC.12 Three different combinations of emotion-
aware multi-task frameworks are tested, for each one of the
three theoretical models (fully-shared, shared-private and
adversarial shared-private): (1) DLC combined with EIR, (2)

12. These baselines correspond to the 5 first rows of Table 2.



TABLE 2
Overall classification results including single-task (ST.) models as well as Fully-Shared Multi-Task (FS MT.), Shared-Private Multi-Task (SP MT.)

and Adversarial Shared-Private Multi-Task (ASP MT.) models. Acc., Ov. and Un. metrics are given in % and respectively correspond to Accuracy,
Over and Under. F1 stands for F1 score, MCC for Matthews Correlation Coefficient. RMSE refers to Root Mean Squared Error, MAE to Mean

Average Error, R2 to Coefficient of Determination, SM. to the Symmetric Mean Absolute Percentage Error and Ov. and Un. to over-evaluation and
under-evaluation metrics for regression. MSE stands for average Mean Squared Error.

Models
Evaluation Metrics

DLC DLR EIR
Acc. F1 MCC RMSE MAE Ov. Un. RMSE MAE R2 SM. Ov. Un. MSE

Baselines without Emotion Intensity Regression
ST. DLC 60.61 0.54 0.38 1.31 0.75 3.03 36.36 - - - - - - -
ST. DLR - - - - - - - 4.90 3.99 0.46 0.97 3.21 5.18 -
ST. EIR - - - - - - - - - - - - - 7.15
FS MT. DLC+DLR 66.66 0.62 0.49 1.23 0.66 3.03 30.31 4.96 3.89 0.44 0.98 2.81 5.19 -
SP MT. DLC+DLR 60.61 0.51 0.39 1.26 0.72 0.00 39.39 4.70 3.81 0.50 0.99 3.39 4.32 -
Multi-task Results with Emotion Intensity Regression
FS MT. DLC+EIR 60.61 0.51 0.42 1.58 0.90 0.00 39.39 - - - - - 6.98
SP MT. DLC+EIR 57.57 0.50 0.35 1.27 0.76 6.07 36.36 - - - - - - 7.05
ASP MT. DLC+EIR 60.61 0.54 0.38 1.26 0.73 9.09 30.30 - - - - - - 7.19
FS MT. DLR+EIR - - - - - - - 4.60 3.74 0.52 0.99 3.16 4.63 6.88
SP MT. DLR+EIR - - - - - - - 4.51 3.89 0.54 0.94 3.91 3.85 6.82
ASP MT. DLR+EIR - - - - - - - 4.72 3.96 0.50 0.94 3.80 4.15 7.08
FS MT. DLC+DLR+EIR 57.57 0.46 0.38 1.36 0.82 3.04 39.39 4.83 4.03 0.47 0.97 3.13 5.11 6.96
SP MT. DLC+DLR+EIR 63.64 0.58 0.48 0.94 0.51 24.24 12.12 4.56 3.79 0.53 0.97 3.20 4.59 7.02
ASP MT. DLC+DLR+EIR 60.61 0.60 0.42 1.14 0.64 12.12 27.27 4.61 3.69 0.52 0.95 2.87 4.81 7.11

DLR combined with EIR, and (3) DLC combined with both
DLR and EIR.13

To evaluate regression/classification results, we use
well-known evaluation metrics that are standard for de-
pression level estimation [40]: (1) Accuracy, F1 score and
Matthews Correlation Coefficient (MCC) for classification;
(2) Root Mean Square Error (RMSE), Mean Average Error
(MAE), Coefficient of Determination (R2) and Symmetric
Mean Absolute Percentage Error (SMAPE) for regression.
In particular, we include two other metrics (Over and Un-
der), that complement Accuracy and evaluate how much
a learning model over-evaluates (Over) or under-evaluates
(Under) the correct result. Such metrics are important to
understand the behavior of learning models. But, as far
as we know, they are not presented in related works. For
classification, Accuracy, Over and Under sum to 100% and
are defined in equations 2 and 3. For regression, Over and
Under metrics quantify average continuous over-evaluation
and under-evaluation and are defined in equations 4 and 5.

Over =

∑
yi<ŷi

1∑
yi
1

(2)

Under =

∑
yi>ŷi

1∑
yi
1

(3)

Over =

∑
yi<ŷi

ŷi − yi∑
yi<ŷi

1
(4)

Under =

∑
yi>ŷi

yi − ŷi∑
yi>ŷi

1
. (5)

Finally, for emotion intensity regression, we present a
global metric MSE that averages the squared errors over
the indicator of the presence of emotion, and all six emo-
tions. It is defined in Equation 6. As our main focus is on

13. These models correspond to the 9 last rows of Table 2.

depression, we do not compute emotion-wise metrics, and
MSE acts as a global indicator.

MSE =
1

|y|
∑
y

i=7∑
i=1

(yi − ŷi)2. (6)

Overall evaluation results are given in Table 2. Note that
we provide all confusion matrices as supplementary online
material14 to show the overall sketch for DLC.

5.1 Results by Task
DLC can be seen as a coarse-grain task compared to DLR.
In this paper, we study both tasks contrarily to previous
related works, which only focus on the fine-grained task.

With respect to DLC, the best results in terms of Ac-
curacy are obtained by the emotion-unaware multi-task
baseline that combines both DLC and DLR, outdoing the
best emotion-aware model by 3.03%. However, best re-
sults in terms of RMSE and MAE are evidenced by the
emotion-aware shared-private multi-task model that con-
currently learns all tasks DLC, DLR and EIR. In this case,
improvements respectively reach 23.57% for RMSE and
22.7% for MAE. So, although the baseline tends to produce
more accurate results, incorrect guesses largely deviate from
the correct answer. Moreover, baseline decisions tend to
under-evaluate the degree of depression. Indeed, for the
best baseline model, 90.9% (Under=30.31%) of the incor-
rect guesses are under-evaluated, compared to only 9.1%
(Over=3.03%), which are over-evaluated. In comparison,
the emotion-aware model tends to over-evaluate depression
levels in 66.6% (Over=24.24%) of the incorrect cases, and
under-evaluates them in 33.3% (Under=12.12%), showing
a more balanced behavior. In terms of medical decisions,
this phenomenon can be an important issue, as under-
evaluating the degree of depression of a given patient may

14. http://dias.users.greyc.fr/cm.pdf.



have worst consequences than over-evaluating it, although
none of these cases should be encountered.15

With respect to DLR, the best results overall are obtained
for the emotion-aware models. In this case, a minimum
RMSE=4.51 is obtained by the shared-private model that
combines DLR and EIR, and a minimum MAE=3.69 is
achieved by the adversarial shared-private model that com-
bines DLR, DLC and EIR. Note that the best evidenced
model for DLC (that is, shared-private multi-task model
combining DLC, DLR and EIR) shows very similar results
with RMSE=4.56 and MAE=3.79 for DLR. As a consequence,
an improvement of 4.04% in terms of RMSE and 3.14%
in terms of MAE can be achieved over the best base-
line, embodied by the shared-private multi-task model that
combines DLC and DLR. Interestingly, the emotion-aware
models tend to show that in case of over-evaluation, the
exceeding values are smaller for the baselines, a situation
that also occurs for under-evaluation, although values of
under-evaluation are larger than figures evidenced by over-
evaluation. As a consequence, there is a tendency of under-
evaluation of all models, which may be a drawback in terms
of medical issue as mentioned above.

With respect to EIR, best results are unexpectedly ob-
tained for depression-aware models, suggesting that emo-
tion intensity regression may also benefit from depres-
sion level regression/classification. In particular, the best
improvement is evidenced by the shared-private two-task
model, which learns DLR and EIR concurrently, with
MSE=6.82, closely followed by the fully-shared model that
combines DLR and EIR with MSE=6.88, evidencing the
second best result. As such, an improvement of 4.6% can
be obtained compared to the baseline.16

The first results show that emotion-aware models can
improve the performance of the depression level estimation.
In particular, the shared-private multi-task model combin-
ing DLC, DLR and EIR seems the more regular architec-
ture to improve over all three tasks on average, as it is
highly ranked for all tasks individually across all evaluation
metrics. Nevertheless, in order to better understand these
results, we propose a class-wise analysis.

5.2 Results by Class
The overall idea of the class-wise analysis is to verify
whether some classes of depression are better handled by
the classifiers than others. Note that as far as we know,
previous related works do not incorporate such an analysis
and rely exclusively on overall results, thus failing to take
into account important medical issues. The overall results
by class are given in Table 3. Note that we do not show all
evaluation metrics as it has been evidenced in Table 2 that
they are all highly correlated.

For that purpose, we present the exact same results of Ta-
ble 2 down-described by the 5 classes of depression, which
are, none-minimal, mild, moderate, moderately severe and
severe. Although this information is interesting, it must be
carefully interpreted as the number of test examples is small
and not equally distributed. For example, there is only one

15. We will see in this section that most DLR models under-evaluate
estimations.

16. Stronger analysis is out of the scope of this paper.

test example for severe depression, and the DAIC-WOZ
dataset contains only four such cases. Overall results are
presented in Table 3.

Within this context, overall results show high inequal-
ities between class. The none-minimal class seems to be
well-handled with high accuracy values and respectively
low RMSE and MAE on average for both DLC and DLR
for all models, including baselines. Note that the best three-
task multi-task model evidences the lowest RMSE and
MAE values for this particular class, although it fails to
correctly classify all examples. Moreover, there is a clear
tendency for over-evaluation, which is understandable as
many examples have a PHQ-8 score equals to 0. These
observations are clearly positive indicators that strong clas-
sification/regression results can be obtained for the class
with more patients involved both at training and test splits.

On the other side, the severe class shows worst class-
wise results as none of the models is capable of correctly
classifying the single example present in the test set. More-
over, almost all models fail to correctly estimate this exam-
ple by a large margin: two classes difference for DLC, and
large RMSE and MAE values for DLR, although less expres-
sive values are obtained for emotion-aware architectures.
Of course, these concluding remarks can not be generalized
due to the lack of statistical evidence over more examples.

As for the moderately severe class, all models per-
form like-wise in terms of DLC accuracy. However, the
emotion-aware models evidence lower RMSE and MAE
values than baseline models, thus showing more accurate
classification estimations. However, in terms of DLR, huge
average under-evaluation values are shown by all models,
thus showing the difficulty to handle this class in terms of
regression. Note that this class is the one that evidences
worst results overall in terms of RMSE and MAE for DLR
over all models. In fact, some patients within this class can
easily be classified, but others are rather difficult to estimate
in terms of depression level, and odd low values are usually
given by the learning model to these cases.

The mild class receives best accuracy levels for the
baseline model, and the best three-task model clearly fails
within this class, showing worst results overall in terms
of DLC. In this case, emotion-aware models do not benefit
from the introduction of the concurrent learning of emotion
intensity. Moreover, almost no improvement is obtained in
terms of DLR by emotion-aware models, to the exception of
the shared-private multi-task models combining DLR and
EIR, with minor improved results. This class is certainly the
one where our initial hypothesis does not clearly stand.

Finally, the moderate class receives highest classifica-
tion results with the three-task model by a large margin.
In this case, it clearly outperforms all emotion-aware and
emotion-unaware models, for accuracy, RMSE and MAE.
With respect to DLR, the best performing model is still an
emotion-aware model, but the two-task model. In this case,
it clearly outperforms all other tested models. Note that in
all cases, there is a clear tendency for under-evaluation as no
estimator over-evaluates any patient’s level of depression.

Although, as explained before, no strict concluding re-
marks can be drawn from this analysis due to the small
number of test examples, this class-wise analysis should
systematically be included in related works of depression



TABLE 3
Detailed classification/regression results by depression level class: None-minimal (0-4 PHQ-8 score), mild (5-9 PHQ-8 score), moderate (10-14

PHQ-8 score), moderately severe (15-19 PHQ-8 score), severe (20-24 PHQ-8 score). Results for the best performing architecture only are given.
Acc., Ov. and Un. metrics are given in % and respectively correspond to Accuracy, Over and Under. RMSE refers to Root Mean Squared Error,

MAE to Mean Average Error, and Ov. and Un. to over-evaluation and under-evaluation for regression.

Models
Evaluation Metrics

DLC DLR
Acc. RMSE MAE Ov. Un. RMSE MAE Ov. Un.

Best for DLC without EIR: FS MT. DLC+DLR Best for DLR without EIR: SP MT. DLC+DLR
None-minimal 100 0.00 0.00 0 - 3.97 3.22 3.51 1.14
Mild 40 1.10 0.80 20.00 40 3.80 3.11 3.82 2.05
Moderate 40 1.34 1.00 0.00 60 4.04 3.50 0.00 3.50
Moderately severe 33.33 2.27 1.83 0.00 66.67 6.78 5.75 0.47 6.81
Severe 0 2.00 2.00 - 100 6.81 6.81 0.00 6.81

Best for DLC+EIR: ASP MT. DLC+EIR Best for DLR+EIR: SP MT. DLR+EIR
None-minimal 100 0.00 0.00 0 - 4.28 3.85 4.05 0.74
Mild 20 1.18 1.00 40 40 3.51 3.07 3.56 2.32
Moderate 20 1.61 1.40 20 60 2.94 2.60 0.00 2.60
Moderately severe 33.33 2.16 1.67 0 66.67 6.70 6.05 2.77 6.71
Severe 0 2.00 2.00 - 100 2.03 2.03 0.00 2.03

Best for DLC+DLR+EIR: SP MT. DLC+DLR+EIR
None-minimal 93.75 0.50 0.13 6.25 - 3.42 2.89 2.97 1.79
Mild 0 1.00 1.00 60 40 3.78 3.49 3.89 2.88
Moderate 80 0.89 0.40 0 20 3.84 3.37 0.00 3.37
Moderately severe 33.33 1.41 1.00 0 66.67 7.54 6.78 4.67 7.21
Severe 0 2.00 2.00 - 100 3.85 3.85 0.00 3.85

level estimation. Indeed, it seems that some classes are
more difficult to handle than others, and also models do
not perform equally over all classes, although there is a
tendency, which confirms the initial hypothesis that emotion
intensity estimation can be beneficial to depression level
classification/regression.

5.3 Results by Learning Models
Finally, we analyze the behavior of each multi-task model
in terms of the fully-shared, shared-private and adversarial
shared-private architectures. In particular, improved results
were expected by the adversarial shared-private models
following initial results reported in [14], [28]. However,
this architecture never reaches the highest results, with the
exception of the two-task model that includes DLC and
EIR, even though it is with a tiny margin over the shared-
private architecture. In fact, the adversarial shared-private
framework relies on a generator, which learns a shared
representation that is capable of fooling the discriminator in
terms of task label. This architecture can indeed be beneficial
when the concurrent tasks are closely related and in partic-
ular when they share some ambiguous features. However,
this is not really the case in our experiments as the length of
the transcripts is unequal for depression and emotion levels,
as well as the vocabulary may not highly overlap. As a
consequence, finding a shared representation that can dis-
criminate between both tasks is not a difficult problem, and
the learned representation may not be informative enough
to handle the concurrent tasks individually. So, the shared-
private models regularly evidence stronger results both for
DLC and DLR, to the exception of the baseline model, which
combines both DLC and DLR. In this case, the fully-shared
model shows the best results. This can easily be understood,
as (1) the same training dataset is used twice in the training
step enforcing the generalization process in terms of shared

representation and (2) DLC can be seen as a subtask of DLR,
thus including a strong regularization process within the
model. Note that this finding is at the origin of the proposed
shared-private three-task architecture, that includes a fully-
shared layer between DLC and DLR, and globally evidences
more stable results overall.

6 CONCLUSION

In this paper, we tested the hypothesis that depression level
classification/regression can leverage from the concurrent
learning of emotion intensity. For that purpose, we imple-
mented a series of emotion-aware and emotion-unaware
multi-task architectures over combinations of three tasks:
depression level classification, depression level regression
and emotion intensity regression. Strong evaluation includ-
ing new metrics and class-wise results shows that emotion-
aware models outperform emotion-unaware baselines in a
vast majority of tested situations over the standard bench-
marks DAIC-WOZ and CMU-MOSEI. We anticipate that
our work will help to reduce the number of cases of late
treatment of depression, as one can always get an estimate
of his/her PHQ-8 score, without needing to consult a psy-
chiatrist, especially considering the stigma surrounding this
illness. However, current results are not accurate enough to
help the therapist in his diagnosis as model performance
is still too low. This should be a great motivation for
future work in depression level estimation. Such research
directions include (1) the combination of text, visual and
acoustic modalities following the ideas of [10], [17], [33],
(2) the study of different concurrent tasks for depression
estimation and (3) the creation of larger datasets to better
evaluate depression models in terms of class-wise results,
that may also include new biomarkers or descriptors.
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