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Abstract. Identifying the specific semantic relations between words is crucial
for IR and NLP systems. Our goal in this paper is twofold. First, we want to un-
derstand whether learning a classifier for one semantic relation (e.g. hypernymy)
can gain from concurrently learning another classifier for a cognitively-linked
semantic relation (e.g. co-hyponymy). Second, we evaluate how these systems
perform where only few labeled examples exist. To answer the first question, we
rely on a multi-task neural network architecture, while for the second we use
self-learning to evaluate whether semi-supervision improves performance. Our
results on two popular datasets as well as a novel dataset proposed in this paper
show that concurrent learning of semantic relations consistently benefits perfor-
mance. On the other hand, we find that semi-supervised learning can be useful
depending on the semantic relation. The code and the datasets are available at
https://bit.ly/2Qitasd.

1 Introduction

The ability to automatically identify lexical-semantic relations is an important issue for
Information Retrieval (IR) and Natural Language Processing (NLP) applications such
as question answering [12], query expansion [18], or text summarization [13]. Lexical-
semantic relations embody a large number of symmetric and asymmetric linguistic phe-
nomena such as synonymy (bike ↔ bicycle), co-hyponymy (bike ↔ scooter), hyper-
nymy (bike→ tandem) or meronymy (bike→ chain), but more exist [37].

Most approaches focus on a single semantic relation and consist in deciding whether
a given relation r holds between a pair of words (x,y). Within this binary classification
framework, the vast majority of efforts [36,29,35,25] concentrate on hypernymy, as
it is the key organization principle of semantic memory. Other studies can be found
on antonymy [26], meronymy [14] and co-hyponymy [38]. Another research direction
consists in dealing with several semantic relations simultaneously. This is defined as
deciding which semantic relation ri (if any) holds between a pair of words (x, y). This
multi-class problem is challenging as it is known that distinguishing between different
semantic relations (e.g. synonymy and hypernymy) is difficult [35].
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Recently, [32] showed that symmetric similarity measures that capture synonymy
[19] are important features in hypernymy detection. Second, [39] showed that learning
term embeddings that take into account co-hyponymy similarity improves hypernymy
identification. Such observations imply that learning features that encode one lexical
relation can benefit the task of identifying another lexical relation. In this work, we
evaluate to what extent this hypothesis holds using four semantic relations: synonymy,
co-hyponymy, hypernymy and meronymy. For this purpose, we use multi-task learning
where the associated tasks that are learned concurrently are the binary classification
problems, which determine the semantic relations between word pairs. Our hypothesis
is that if the tasks are cognitively linked, multi-task learning approaches should improve
the performance on the tasks as the decision functions are learned concurrently.

In this paper, we also explore the effect of relying on a small amount of labeled data
and a larger number of unlabeled data when learning classification models. Indeed, pre-
vious works use several (rather small) gold standard datasets of word pairs ignoring the
potential of weakly labeled word pairs that can be obtained through selected lexico-
syntactic patterns [17] or paraphrase alignments [11]. We argue that such gold-standard
datasets may not be available for specific languages or domains. Moreover, human cog-
nition and its generalization capacity is unlikely to rely on the equivalent number of
positive examples. Therefore, we propose to use semi-supervised learning methods,
both with and without multi-task learning, and evaluate whether they can benefit over-
all performance amongst all experimented tasks.

Our contributions in this paper are as follows: (1) we show that multi-task learning
consistently improves the classification performance of semantic relations, (2) we build
a novel dataset for this specific task that is larger than previously published datasets
and will serve the community when developing and evaluating classification methods
for semantic relations, and (3) we show that semi-supervised learning can benefit per-
formance depending on the used dataset and semantic relation.

2 Related Work

Whether semantic relation identification has been tackled as a binary or a multi-class
problem, two main families of approaches have been proposed to capture the semantic
links between two words (x, y): pattern-based and distributional. Pattern-based (also
called path-based) methods base their decisions on the analysis of the lexico-syntactic
patterns (e.g. X such as Y) that connect the joint occurrences of x and y. Within this
context, earlier works proposed unsupervised [17] and supervised [36] methods to de-
tect hypernymy. However, path-based approaches suffer from sparse coverage and ben-
efit precision over recall. To overcome these limitations, recent two-class studies on
hypernymy [35] and antonymy [26], as well as multi-class approaches [34] have been
focusing on representing dependency patterns as continuous vectors using long short-
term memory networks. Within this context, successful results have been evidenced but
[35,26] also show that the combination of pattern-based methods with the distributional
approach greatly improves performance.

In distributional methods, the decision whether x is within a semantic relation with
y is based on the distributional representation of these words following the distribu-
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tional hypothesis [16], i.e. on the separate contexts of x and y. Earlier works developed
symmetric [11] and asymmetric [20] similarity measures based on discrete representa-
tion vectors, followed by numerous supervised learning strategies for a wide range of
semantic relations [3,29,38], where word pairs are encoded as the concatenation of the
constituent words representations (−→x ⊕ −→y ) or their vector difference (−→x − −→y ). More
recently, attention has been focusing on identifying semantic relations using neural lan-
guage embeddings, as such semantic spaces encode linguistic regularities [23]. Within
this context, [37] proposed an exhaustive study for a wide range of semantic relations
and showed that under suitable supervised training, high performance can be obtained.
However, [37] also showed that some relations such as hypernymy are more difficult
to model than others. As a consequence, new proposals have appeared that tune word
embeddings for this specific task, where hypernyms and hyponyms should be closed to
each other in the semantic space [39,25].

In this paper, we propose an attempt to deal with semantic relation identification
based on a multi-task strategy, as opposed to previous two-class and multi-class ap-
proaches. Our main scope is to analyze whether a link exists between the learning pro-
cess of related semantic relations. The closest approach to ours is proposed by [2],
which develops a multi-task convolutional neural network for multi-class semantic re-
lation classification supported by relatedness classification. As such, it can be seen as a
domain adaptation problem. Within the scope of our paper, we aim at studying semantic
inter-relationships at a much finer grain and understanding the cognitive links that may
exist between synonymy, co-hyponymy, hypernymy and meronymy, that represent a
large proportion of any taxonomic structure. For this first attempt, we follow the distri-
butional approach as in [2], although we are aware that improvements may be obtained
by the inclusion of pattern-based representations6. Moreover, to the best of our knowl-
edge, we propose the first attempt to deal with semantic relation identification based on
a semi-supervised approach, thus avoiding the existence of a large number of training
examples. As a consequence, we aim at providing a more natural learning framework
where only a few labeled examples are initially provided and massively-gathered related
word pairs iteratively improve learning.

3 Methodology

3.1 Multi-task with hard parameter sharing

As discussed in [6], not every task combination is beneficial. But, concurrent learning
of tasks that have cognitive similarities is often beneficial. We may hypothesize that
recognizing the different semantic relations that hold between words can benefit clas-
sification models across similar tasks. For instance, learning that bike is the hypernym
of mountain bike should help while classifying mountain bike and tandem bicycle as
co-hyponyms, as it is likely that tandem bicycle shares some relation with bike. To test
this hypothesis, we propose to use a multi-task learning approach. Multi-task learning
[8] has been empirically validated and has shown to be effective in a variety of NLP
tasks ranging from sentiment analysis to part-of-speech tagging and text parsing [7,6].

6 This issue is out of the scope of this paper.
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The hope is that by jointly learning the decision functions for related tasks, one can
achieve better performance. It may be first due to knowledge transfer across tasks that
is achieved either in the form of learning more robust representations or due to the use
of more data. Second, it has been argued that multi-task learning can act as a regular-
ization process thus preventing from overfitting by requiring competitive performance
across different tasks [8].

In this paper, we propose to use a multi-task learning algorithm that relies on hard
parameter sharing. Using a simple neural network architecture, our primary objective
is to validate our initial hypotheses limiting the effect that choices of architectures and
free parameters may have, to the extent of possible. The idea is that the shared pa-
rameters (e.g. word representations or weights of some hidden layers) can benefit the
performance of all tasks learned concurrently if the tasks are related. In particular, we
propose a hard parameter sharing architecture based on a feed-forward neural network
(NN) to perform the classification task. The NN architecture is illustrated in Figure
1, based on the overall idea is that there exists a common representation of the input
features that can serve to solve all tasks at hand.

Multi-task outputs

w1

w2

h1 hR

softmax1

softmaxM

..
.. . .

shared layers

Fig. 1. Feed-forward neural network, where the layers h1 · · ·hR are shared across tasks while the
output layers softmax1 · · · softmaxM are task-dependent.

In this model, all tasks base their decision on the same shared representation7. In
particular, the input of the network is the concatenation of the word embeddings of
the word pairs followed by a series of non-linear hidden layers. Then, a number of
softmax layers gives the network predictions. Here, a softmax layer corresponds to
a task, and concurrently learning M tasks requires M separate output softmax layers.
For example, if the network tries to solve two problems concurrently, like hypernymy vs.
random and hyponymy vs. random, there will be two independent outputs with separate
loss functions, each one solving a dedicated problem. The efficiency of hard parameter
sharing architectures relies on the fact that the first layers that are shared are tuned by
back-propagating the classification errors of every task. That way, the architecture uses
the datasets of all tasks (the two dataset of the two problems in the above example),
instead of just one at a time. In Algorithm 1, we detail the training protocol. Note that

7 We are aware that this architecture can further be improved by additional task-specific inputs,
but as a great deal of possible models can be proposed, which deserve intensive research, this
issue remains out of the scope of this paper.
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the different tasks learned by the NN share the same weights as batches are randomly
sampled from their corresponding datasets. Notice that the architecture can be used
with different weights for the tasks or can even be tuned with in order to achieve better
results on one of the tasks. Automatically learning these weights is an interesting future
research direction.

Algorithm 1: Multi-task Training Process
Data: Labeled words pairs Li for each of the M tasks, batch size b, epochs
epoch = 1 ;
while epoch < epochs do

for i = 0; i < M ; i = i+ 1 do
Randomly select a batch of size b for task i ;
Update the parameters of the neural network architecture according to the errors

observed for the batch;
Calculate the performance on the validation set of task i.

end
end

3.2 Semi-supervision via self-learning

Semi-supervised learning approaches perform well in a variety of tasks such as text
classification and text summarization [1,9]. As in the supervised learning framework,
we assume that we are given access to a set L = {(wi, w

′
i, rel)}i=K

i=1 that consists of
K pairs of words labeled according to the relationship rel. Complementary to that, we
also assume to have access to a set ofK ′ words pairs U = {(wi, w

′
i)}i=K′

i=1 distinct from
those of L, and totally unlabeled. The challenge in this setting is to surpass the perfor-
mance of classification models trained exclusively on L by using the available data in
U . To do so we use self-learning, boosting the training set with confident predictions of
an initial classifier. Formally, the underlying idea of self-learning is to train a learner on
the set L, and then progressively expand L, by pseudo-labeling N pairs within U , for
which the current prediction function is the most confident and adding them to L. This
process is repeated until no more pairs are available in U or, that the performance on
a validation set degrades due to the newly-added possibly noisy examples. Algorithm
2 details this process. One point illustrated in Algorithm 2 to be highlighted is that the
training set L is augmented after each iteration of self-learning in a stratified way. In
this case, the class distribution of the N pseudo-labeled examples that are added to L
is the same as the class distribution of L. This constraint follows from the independent
and identically distributed (i.i.d.) assumption between the L and U sets and ensures that
the distribution on the classes in the training set does not change as training proceeds.
Another point to be mentioned is that the examples that are added to L may be noisy.
Despite the confident predictions of the classifier C, one should expect that some of the
instances added are wrongly classified. To reduce the impact of the noise to the training
set, we monitor the performance of the classifier using the validation set V and if the
performance degrades the self-learning iteration stops.
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Algorithm 2: Self-learning
Data: Word pairs: labeled L, unlabeled U , validation V; integer N
L0 = L, U0 = U ;
Train classifier C using L0, V0 : Performance of C on V ;
Set t = 0;
while Size(Ut) > 0 and Vt > V0 do

Get probability scores p of C on Ut ;
pseudo labeled(N) = argmax(p), stratified wrt L0 ;
t = t + 1;
Lt = Lt−1 + pseudo labeled ;
Ut = Ut−1 − pseudo labeled;
Retrain C using Lt, Vt : Performance of C on V ;

end

4 Experimental Setups

4.1 Datasets

In order to perform our experiments, we use the ROOT9 dataset8 [31] that contains
9,600 word pairs, randomly extracted from three well-known datasets: EVALution [33],
Lenci/Benotto [5] and BLESS [4]. The word pairs are equally distributed among three
classes (hypernymy, co-hyponymy and random) and involve several part-of-speech tags
(adjectives, nouns and verbs). Here, we exclusively focus on nouns and keep 1,212
hypernyms, 1,604 co-hyponyms and 549 random pairs that can be represented by GloVe
embeddings [28].

In order to include synonymy as a third studied semantic relation, we build the
RUMEN dataset9 that contains 18,978 noun pairs automatically gathered from WordNet
3.010 [24] and equally organized amongst three classes (hypernymy, synonymy and
random). Note that the words in the pairs are single words and do not contain multi-
word expressions. In particular, the RUMEN dataset contains 9,125 word types (i.e.
unique nouns) distributed as follows for each semantic relation: 5,054 for hypernymy,
5,201 for synonymy and 6,042 for random. In order to evidence the ambiguity level
of the dataset, Table 1 presents the distribution of the types by the number of senses
they cover in WordNet. It can be evidenced that while the random category is mainly
composed (by construction) of weakly ambiguous nouns, synonymy embodies a large
set of polysemous words, while hypernymy contains both weakly polysemous words
(usually the hyponym) and more polysemous words (usually the hypernym).

Note that with respect to hypernyms, all noun pairs are randomly selected such
that they are not necessarily in direct relation. Exactly 17.2% of the hypernyms are
in direct relation, 19.9% have a path length of 2, 20.2% of 3, 16.2% of 4, and 26.5%
have a path length superior or equal to 5. Note also that random pairs have as lowest

8 https://github.com/esantus/ROOT9.
9 Available at https://bit.ly/2Qitasd.

10 http://wordnetcode.princeton.edu/3.0/.
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common ancestor the root of the hierarchy with a minimum path distance equals to 711

between both words so to ensure semantic separateness. On average, each random pair
is separated by a path length of 13.2.

Table 1. Distribution of types by number of senses discriminated by semantic category.

# of senses 1 2 3 4 5 6 ≥7

RUMEN Hypernymy 24.69% 19.67% 14.21% 9.34% 7.40% 4.82% 19.87%
RUMEN Synonymy 18.46% 18.80% 14.52% 11.04% 8.52% 5.77% 22.89%
RUMEN Random 39.71% 23.28% 12.89% 7.54% 5.05% 3.08% 8.45%

In order to better understand the particularities of the RUMEN dataset, we present
the portions of the hierarchy, which are covered by the word pairs in Table 2. To do
so, we compute the path length that holds between the root and the highest word of the
noun pair in the hierarchy, for all pairs, and calculate the respective distribution.

Table 2. Distribution of pairs by length path from the root discriminated by semantic category.

Path length 0 1 2 3 4 5 6 ≥7

RUMEN Hypernymy 5.72% 2.99% 10.22% 27.91% 23.58% 14.86% 9.21% 5.51%
RUMEN Synonymy 0.00% 0.00% 0.08% 1.72% 10.92% 26.14% 26.88% 34.26%
RUMEN Random 0.00% 0.03% 0.69% 5.56% 20.34% 30.07% 22.63% 20.68%

Note that for the synonymy relation, mostly the bottom part (i.e. near the leaves)
is covered, while for the hypernymy relation, most pairs have their hypernym in the
middle of the hierarchy (levels 3 and 4)12. As for the random relation, the pairs are
rather uniformly distributed from level 4 to bottom.

Finally, note that for our experiment, we keep 3,375 hypernym, 3,213 synonym
and 3,192 random word pairs encoded by GloVe embeddings as many pairs contain
unknown words.

4.2 Lexical Splits

Following a classical learning procedure, the datasets must be split into different sub-
sets: train, validation, test and unlabeled in the case of semi-supervision. The standard
procedure is random splitting where word pairs are randomly selected without other
constraint to form the subsets. However, the authors of [21] point out that using distri-
butional representations in the context of supervised learning tends to perform lexical
memorization. In this case, the model mostly learns independent properties of single

11 This value was set experimentally.
12 A large number of hypernym pairs contain the root synset “entity”, i.e. path length equals to 0.



8 G. Balikas et al.

terms in pairs. For instance, if the training set contains word pairs like (bike, tandem),
(bike, off-roader) and (bike, velocipede) tagged as hypernyms, the algorithm may learn
that bike is a prototypical hypernym and all new pairs (bike, y) may be classified as hy-
pernyms, regardless of the relation that holds between bike and y. To overcome this
situation and prevent the model from overfitting by lexical memorization, [21] sug-
gested to split the train and test sets such that each one contains a distinct vocabulary.
This procedure is called lexical split. Within the scope of this study, we propose to ap-
ply lexical split as defined in [21]. So, lexical repetition exists in the train, validation
and the unlabeled subsets, but the test set is exclusive in terms of vocabulary. Table 3
shows the vocabulary and the pairs before and after the lexical splits.

Table 3. Statistics on the datasets and the lexical splits we performed to obtain the train and
test subsets. V is the vocabulary size in the original dataset; Vtrain (resp. Vtest) corresponds to the
vocabulary size in the train (resp. test) dataset for the lexical split after removing all words that do
not belong to GloVe dictionary. Then, for each lexical relation, we provide the number of word
pairs in the train/test datasets.

Dataset ROOT9 RUMEN ROOT9+RUMEN BLESS

Co-hyponyms 939/665 - 1,193/350 1,361/502
Hypernyms 806/486 2,638/737 3,330/1,238 525/218
Meronyms - - - 559/256
Synonyms - 2,256/957 2,297/1,002 -

Random 339/210 2,227/965 2,630/1,160 2,343/971
V 2,373 9,125 9,779 3,582

Vtrain/Vtest 1,423/950 5,475/3,650 5,867/3,912 3,181/2,121

For the specific case of semi-supervised learning, we have further split the pairs
dubbed as train so that 60% of them are unlabeled examples. From the remaining
40%, we have randomly selected 30% for validation, resulting in few training exam-
ples, which resembles more to a realistic learning scenario where only few positive
examples are known. This process is illustrated in Figure 2, with the percentages of
the overall dataset. Note that lexical split is not performed between the train, validation
and unlabeled subsets13. So, while lexical split ensures that the network generalizes to
unseen words, it also results in significantly smaller datasets due to the way that these
datasets are produced.

4.3 Learning Frameworks

In order to evaluate the effects of our learning strategy, we implement the following
baseline systems: (1) Multi-class Logistic Regression using a one-vs-rest approach14,

13 All datasets are available at https://bit.ly/2Qitasd.
14 A multi-class model learns to separate between several classes and direct comparison with

binary models is not fair. Nevertheless, we report its performance as it highlights the potential
of multi-class learning for problems that are cognitively similar.
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Fig. 2. Illustration of the lexical split of the datasets. The percentages in parentheses correspond
to the portions of the original data, used for each purpose.

(2) Logistic Regression that has shown positive results in [32] for hypernymy (i.e. a
binary problem), and (3) Feed-forward neural network with two hidden layers of 50
neurons each, which is the direct binary counterpart of our multi-task NN.

For the multi-task learning algorithm, we implemented the architecture shown in
Figure 1 using Keras [10]. In particular, we define 2 fully-connected hidden layers (i.e.
h1, h2, R = 2) of 50 neurons each. While the number of hidden layers is a free param-
eter to tune, we select two hidden layers in advance so that the complexity of the multi-
task models are comparable to the neural network baseline. The activation function of
the hidden layers is the sigmoid function and the weights of the layers are initialized
with a uniform distribution scaled as described in [15]. As for the learning process,
we use the Root Mean Square Propagation optimization method with learning rate set
to 0.001 and the default value for ρ = 0.9. For every task, we use the binary cross-
entropy loss function. The network is trained with batches of 32 examples15. The word
embeddings are initialized with the 300-dimensional representations of GloVe [28].

For the Logistic Regression, we used the implementation of scikit-learn [27]. In
particular, a grid search with stratified 3-fold cross validation was used to select the C
value in [0.001, 0.01, 0.1, 1, 10].

5 Results

In the following experiments, we report two evaluation measures: Accuracy and Macro-
average F1 measure (MaF1). Accuracy captures the number of correct predictions over
the total predictions, while MaF1 evaluates how the model performs across the different
relations as it uniformly averages the F1 measures of each relation. In the remaining
paragraphs, we comment on three experiments.

In the first experiment, we propose to study the impact of the concurrent learning
of co-hyponymy (bike↔ scooter) and hypernymy (bike→ tandem) following the first
findings of [39]. For that purpose, we propose to apply our (semi-supervised) multi-task
learning strategy over the lexically split ROOT9 dataset using vector concatenation of
GloVe [28] as feature representation. Results are illustrated in Table 4. The multi-task
paradigm shows that an improved MaF1 score can be achieved by concurrent learning
without semi-supervision achieving a value of 77.3% (maximum value overall). In this
case, a 1.1% improvement is obtained over the best baseline (i.e. logistic regression) for
hypernymy classification, indeed suggesting that there exists a learning link between

15 The code is available at https://bit.ly/2Qitasd.
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hypernymy and co-hyponymy. However, the results for co-hyponymy classification can
not compete with a classical supervised strategy using logistic regression. In this case, a
2.1% decrease in MaF1 is evidenced suggesting that the gains for hypernymy classifica-
tion are not positively balanced by the performance of co-hyponymy. So, we can expect
an improvement for hypernymy classification but not for co-hyponymy, suggesting a
positive influence of co-hyponymy learning towards hypernymy but not the opposite.
Interestingly, the results of the semi-supervised strategy reach comparable figures com-
pared to the multi-task proposal (even superior in some cases), but do not complement
each other for the semi-supervised multi-task experiment. In this case, worst results are
obtained for both classification tasks suggesting that the multi-task model is not able to
correctly generalize from a large number of unlabeled examples, while this is the case
for the one-task architecture.

Table 4. Accuracy and MaF1 scores on ROOT9 and RUMEN datasets using GloVe.

Co-hypo. vs Random Hyper. vs Random Average Results

Algorithm Accuracy MaF1 Accuracy MaF1 Accuracy MaF1

R
O

O
T

9

Multi-class Logistic Regression 0.740 0.500 0.781 0.507 0.760 0.500
Logistic Regression 0.893 0.854 0.814 0.762 0.854 0.808
NN Baseline 0.890 0.851 0.803 0.748 0.847 0.800
Self-learning 0.869 0.859 0.816 0.772 0.843 0.815
Multi-task learning 0.882 0.833 0.818 0.773 0.850 0.803
Multi-task learning + Self-learning 0.854 0.811 0.810 0.767 0.832 0.789

Syn. vs Random Hyper. vs Random Average Results

Algorithm Accuracy MaF1 Accuracy MaF1 Accuracy MaF1

R
U

M
E

N

Multi-class Logistic Regression 0.600 0.430 0.620 0.467 0.610 0.448
Logistic Regression 0.628 0.628 0.711 0.706 0.670 0.667
NN Baseline 0.679 0.678 0.752 0.748 0.716 0.713
Self-learning 0.686 0.685 0.757 0.754 0.722 0.720
Multi-task learning 0.706 0.700 0.755 0.750 0.731 0.725
Multi-task learning + Self-learning 0.708 0.708 0.760 0.755 0.734 0.732

In the second experiment, we propose to study the impact of the concurrent learn-
ing of synonymy (bike ↔ bicycle) and hypernymy following the experiments of [32]
which suggest that symmetric similarity measures (usually tuned to detect synonymy
[19]) improve hypernymy classification. For that purpose, we propose to apply the same
models over the lexically split RUMEN dataset. Results are illustrated in Table 4. The
best configuration is the combination of multi-task learning with self-learning achieving
maximum accuracy and MaF1 scores for both tasks. The improvement equals to 0.7%
in terms of MaF1 for hypernymy and reaches 3% in terms of MaF1 for synonymy when
compared to the best baseline (i.e. neural network). The overall average improvement
(i.e. both tasks combined16) reaches 1.8% for accuracy and 1.9% for MaF1 over the
best baseline. So, these results tend to suggest that synonymy identification may posi-
tively be impacted by the concurrent learning of hypernymy and vice versa (although
to a less extent). In fact, these results consistently build upon the positive results of the

16 Column 3 of Table 4.
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multi-task strategy without semi-supervision and the self-learning approach alone that
both improve over the best baseline results. Nevertheless, the improvement obtained by
combining multi-task learning and semi-supervision is negligible compared to multi-
task alone. Note also that the results obtained over the RUMEN dataset by the baseline
classifiers are lower than the ones reached over ROOT9 for hypernymy, certainly due
to the complexity of the datasets themselves. So, we may hypothesize that the multi-
task strategy plays an important role by acting as a regularization process and helping in
solving learning ambiguities, and reaches improved results over the two-task classifiers.

In the third experiment, we propose to study the impact of the concurrent learn-
ing of co-hyponymy, synonymy and hypernymy together. The idea is to understand
the inter-relation between these three semantic relations that form the backbone of any
taxonomic structure. For that purpose, we propose to apply the models proposed in this
paper over the lexically split ROOT9+RUMEN dataset17. Results are illustrated in Table
5. The best configuration for all the tasks combined (i.e. co-hyponymy, synonymy and
hypernymy) is multi-task learning without semi-supervision. Overall, improvements up
to 1.4% in terms of accuracy and 2% in terms of MaF1 can be reached over the best
baseline (i.e. neural network). In particular, the MaF1 score increases 4.4% with the
multi-task strategy without self-learning for co-hyponymy, while the best result for syn-
onymy is obtained by the semi-supervised multi-task strategy with an improvement of
1.1% MaF1 score. The best configuration for hypernymy is evidenced by self-learning
alone, closely followed by the multi-task model, reaching improvements in MaF1 scores
of 1.7% (resp. 1%) for self-learning (resp. multi-task learning). Comparatively to the
first experiment, both learning paradigms (i.e. semi-supervision and multi-task) tend to
produce competitive results alone, both exceeding results of the best baseline. How-
ever, the multi-task model hardly generalizes from the set of unlabeled examples, being
synonymy the only exception. Finally, note that co-hyponymy seems to be the simplest
task to solve, while synonymy is the most difficult one, over all experiments.

In the fourth experiment, We now study the meronymy relation (bike → chain)
into a multi-task environment, as it has traditionally been studied together with hyper-
nymy [14]. The overall idea is to verify whether meronymy can benefit from the con-
current learning of the backbone semantic relations that form knowledge bases. For that
purpose, we apply our learning models over the lexically split BLESS dataset [4] that
includes three semantic relations: co-hyponymy, hypernymy and meronymy. The de-
tails of the lexical split is presented in Table 3 and note that the BLESS dataset has been
processed in the exact same way as ROOT9 and RUMEN, i.e. retaining only noun cate-
gories and word pairs that can be represented by the GloVe semantic space. Results are
presented in Table 5. The best configuration over the three tasks combined is obtained
by the semi-supervised multi-task strategy with a MaF1 score equals to 80.3%, thus im-
proving 1.2% over the best baseline (i.e. neural network). In particular, we can notice
that the most important improvement is obtained for the meronymy relation that reaches
73.3% for MaF1 and 76.4% for accuracy with the multi-task model without semi-
supervision. In this particular case, the improvement is up to 2.6% in accuracy and 2.4%
in MaF1 over the neural network baseline. For co-hyponymy (resp. hypernymy), best re-

17 Note that due to the lexical split process, results can not directly be compared to the ones
obtained over ROOT9 or RUMEN.
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Table 5. Accuracy and MaF1 scores on ROOT9+RUMEN and BLESS datasets using GloVe.

Co-hypo. vs Random Hyper. vs Random Syn. vs Random Average Results

System Accuracy MaF1 Accuracy MaF1 Accuracy MaF1 Accuracy MaF1
R

O
O

T
+R

U
M

E
N Multi-class Log. Reg. 0.606 0.370 0.560 0.320 0.500 0.280 0.555 0.323

Logistic Regression 0.909 0.872 0.669 0.669 0.634 0.632 0.737 0.724
NN Baseline 0.914 0.875 0.712 0.712 0.663 0.659 0.763 0.748
Self-learning 0.928 0.900 0.729 0.729 0.668 0.665 0.775 0.765
Multi-task learning 0.943 0.919 0.723 0.722 0.666 0.664 0.777 0.768
Multi-task learning + Self. 0.939 0.911 0.711 0.711 0.672 0.670 0.774 0.764

Co-hypo. vs Random Hyper. vs Random Mero. vs Random Average Results

System Accuracy MaF1 Accuracy MaF1 Accuracy MaF1 Accuracy MaF1

B
L

E
SS

Multi-class Log. Reg. 0.760 0.408 0.720 0.355 0.722 0.362 0.734 0.375
Logistic Regression 0.845 0.830 0.888 0.794 0.748 0.723 0.827 0.782
NN Baseline 0.870 0.855 0.892 0.809 0.738 0.709 0.833 0.791
Self-learning 0.877 0.863 0.900 0.807 0.749 0.723 0.842 0.798
Multi-task learning 0.866 0.847 0.903 0.816 0.764 0.733 0.844 0.799
Multi-task learning + Self. 0.878 0.863 0.900 0.813 0.754 0.733 0.844 0.803

sults are obtained by multi-task with semi-supervision (resp. without semi-supervision),
but show limited improvements over the best baseline, suggesting that meronymy gains
more in performance from the concurrent learning of co-hyponymy and hypernymy
than the contrary, although improvements are obtained in all cases. Comparatively to
the other experiments, we also notice that although the self-learning algorithm and the
multi-task framework without semi-supervision perform well alone, the combination of
both strategies does not necessary lead to the best results overall, suggesting that the
present architecture can be improved by the massive extraction of unlabeled examples.

6 Conclusions

In this paper, we proposed to study the concurrent learning of cognitively-linked se-
mantic relations (co-hyponymy, hypernymy, synonymy and meronymy) using semi-
supervised and multi-task learning. Our results show that concurrent learning leads to
improvements in most tested situations and datasets, including the newly-built dataset
called RUMEN. In particular, results show that hypernymy can gain from co-hyponymy,
synonymy from hypernymy, co-hyponymy from both hypernymy and synonymy, and
meronymy from both co-hyponymy and hypernymy. Moreover, it is interesting to no-
tice that in three cases out of four, the improvement achieved by the multi-task strategy
is obtained for the most difficult task to handle. Nevertheless, there still exists a great
margin for improvement. First, we intend to propose new multi-task architectures that
include task-specific features similarly to [22] as well as LSTM path-based features as
in [35]. Second, we expect to build on new semi-supervised multi-task architectures
such as Tri-training [30] to positively combine semi-supervision and multi-task learn-
ing as their combination is currently not beneficial in a vast majority of cases. Third, we
intend to massively gather unlabeled examples by lexico-syntactic patterns [17] or by
paraphrase alignment [11] instead of simulating such a behaviour, as we do currently.
Finally, we plan to test all our configurations in “noisy” situations as proposed in [37].
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