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Abstract.

The ability to capture the time information conveyed in natu-
ral language is essential to many natural language processing ap-
plications such as information retrieval, question answering, auto-
matic summarization, targeted marketing, loan repayment forecast-
ing, and understanding economic patterns. In this paper, we propose
a graph-based semi-supervised classification strategy that makes use
of WordNet definitions or ‘glosses’, its conceptual-semantic and lex-
ical relations to supplement WordNet entries with information on
the temporality of its word senses. Intrinsic evaluation results show
that the proposed approach outperforms prior semi-supervised, non-
graph classification approaches to the temporality recognition of
word senses, and confirm the soundness of the proposed approach.

1 Introduction

There is considerable academic and commercial interest in process-
ing time information in text, where that information is expressed ei-
ther explicitly, or implicitly, or connotatively. Recognizing such in-
formation and exploiting it for Natural Language Processing (NLP)
and Information Retrieval (IR) tasks are important features th and at
can significantly improve the functionality of NLP/IR applications
[5, 1].

Most text applications have been relying on rule-based time tag-
gers such as HeidelTime [9] or SUTime [2] to identify and normalize
time mentions in texts. Although interesting levels of performance
have been seen, their coverage is limited to the finite number of rules
they implement. Such systems would certainly benefit from the exis-
tence of a temporal resource enumerating a large set of possible time
variants.

However, discovering the temporal orientation of words is a chal-
lenging issue even for humans if they intend to formalize them in
a knowledge-base, despite the fact that they manage temporal infor-
mation very naturally and efficiently during their everyday life. There
are several explanations for this difficulty: (i) temporal connotations
can be conveyed via a wide range of different mechanisms including
grammar, aspect, and lexical semantic knowledge [8]. These proper-
ties need to be correctly identified, interpreted, and combined to de-
rive the appropriate temporal orientation, (ii) another challenge arises
from the fact that time can be expressed in countless manners and
is not always expressed explicitly, rather implicitly and require in-
terpretations or inferences derived from world knowledge, (iii) con-
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ventional knowledge acquisition approaches are usually driven by
humans, which means that they are labor-intensive, time-consuming
and troublesome, (iv) the data sparsity problem is aggravated by the
fact that dictionary definitions or ‘glosses’ are very short, typically
contains few words.

Whereas most of the prior computational linguistics and text
mining temporal studies have focused on temporal expressions and
events, there has been a lack of work looking at the temporal orien-
tation of word senses/synsets. In this paper, we put forward a semi-
supervised graph-based classification paradigm build on an optimiza-
tion theory namely the max-flow min-cut theorem [7]. In particu-
lar, we propose minimum cut in a connected graph to time-tag each
synset of WordNet [6] to one of the two dimensions: temporal and
atemporal. Our methodology was evaluated intrinsically and out-
performed prior approaches to the temporality recognition of word
senses.

2 Methodology

The s-t mincut algorithm is based on finding minimum cuts in a
graph, and uses pairwise relationships among examples in order to
learn from both labeled and unlabeled data. In particular, it outputs
a classification corresponding to partitioning a graph in a way that
minimizes the number of similar pairs of examples that are given
different labels.

The formulation of our mincut strategy for temporal classification
of synsets involves the following steps.

• Step I. We define two vertices s (source) and t (sink), which cor-
respond to the temporal and atemporal categories, respectively.
Vertices s and t are classification vertices, and all other vertices
(labeled and unlabeled) are example vertices.

• Step II. The labeled examples are connected to the classification
vertices they belong to via edges with high constant non-negative
weight. The unlabeled examples are connected to the classification
vertices via edges weighted with non-negative scores that indicate
the degree of belonging to both the temporal and atemporal cat-
egories. Weights (i.e. individual scores) are calculated based on a
supervised classifier learned from labeled examples. For the clas-
sification task, each synset from the labeled dataset is represented
by its gloss encoded as a vector of word unigrams weighted by
their frequency. Then, a two-class SVM classifier is built from
the Weka platform.4 and the SVM membership scores are directly
mapped to edge weights.

• Step III. For all pairs of example vertices, for which there exists a
listed semantic relation in WordNet, an edge is created. This one

4 http://www.cs.waikato.ac.nz/ml/weka/
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Figure 1: Example graph.

receives a non-negative score that indicates the degree of semantic
relationship between both vertices (i.e. association score).

• Step IV. The max-flow theorem [7] is applied over the built graph
to find the minimum s-t cut.5

2.1 Example

Figure 1 illustrates a classification problem with a set of three words
{promise (Y), oath (M), chair (N)} belonging either to the temporal
class (C1) or the atemporal class (C2) with the s-t mincut algorithm.
Square brackets enclose edge weights (here probability scores). Ta-
ble 1 presents all possible cuts and respective costs. The minimum
cut (indicated by the dashed red line) places {promise, oath } in C1
and {chair} in C2.

C1 C2 ∑x∈C1
ind2(x)

+
∑x∈C2

ind1(x)

∑xi∈C1 ,xk∈C2
assoc(xi,xk) cost(S,T )

Y,M N 0.2+0.5+0.1 0.1 + 0.2 1.1
none Y,M,N 0.8+0.5+0.1 0 1.4

Y,M,N none 0.2+0.5+0.9 0 1.6
Y M,N 0.2+0.5+0.1 1.0+0.1 1.9
N Y,M 0.8+0.5+0.9 0.1+0.2 2.5
M Y,N 0.8+0.5+0.1 1.0+0.2 2.6

Y,N M 0.2+0.5+0.9 1.0+0.2 2.8
M,N Y 0.8+0.5+0.9 1.0+0.1 3.3

Table 1: Possible cuts for the illustrative case of Figure 1.

3 Experiments and Evaluation

We used a list that consists of 632 temporal synsets and an equal
number of atemporal synsets provided by Dias et al. [3] as labeled
data for our experiments.

Using our formulation in Section 2, we construct a connected
graph by importing 1264 training set (632 temporal and 632 atem-
poral synsets), and 116394 unlabeled synsets6. We construct edge
weights to classification vertices, s (temporal) and t (atemporal) by
using the SVM classifier discussed above. WordNet relations for
links between example vertices are weighted by non-negative con-
stant value of 1.

In order to compare our approach to prior works, we adopted a
similar evaluation strategy as proposed in Dias et al. (2014) and
Hasanuzzaman et al. [4]. To assess human judgment regarding the

5 Max-flow algorithms show polynomial asymptotic running times and near-
linear running times in practice.

6 All synset of WordNet− labeled data

temporal parts, inter-rater agreement with multiple raters (i.e. 3 hu-
man annotators with the 4th annotator being the classifier) was
performed over a set of 398 randomly selected synsets. The free-
marginal multirater kappa and the fixed-marginal multirater kappa
values are reported in Table 2 and assess moderate agreement for pre-
vious versions of TempoWordNet (TWnL, TWnP and TWnH), while
good agreement is obtained for the resources constructed by mincut.
These agreement values provide a first and promising estimate of the
improvement over the previous versions of TempoWordNet. We plan
to confirm that in the future by comparing the systems to a true ref-
erence instead of observing the agreement between the systems and
a multi-reference as we currently do.

Metric TWnL TWnP TWnH Mincut

Fixed-marginal κ 0.51 0.46 0.54 0.71
Free-marginal κ 0.52 0.55 0.59 0.82

Table 2: Inter-annotator agreement.

4 Conclusions

In this paper, we proposed a semi-supervised minimum cut frame-
work to address the problem of associating word senses with their
underlying temporal dimensions. Comparative evaluations are per-
formed to measure the quality of the resource. The results confirm
the soundness of the proposed approach.

As part of future work, we plan to investigate the effect of other
graph construction methods, such as different weights to different
WordNet relations to reflect the degree to which they are temporality
preserving instead of using same for all. Another direction of future
work is to fine tune the temporal part into past, present, and future.
We would also like to explore the impact of the resource on more ap-
plied temporal information extraction task such as temporal relation
annotation of TempEval-3 challenge.
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