
Unsupervised Learning of Paraphrases

João Cordeiro1, Gaël Dias1, and Pavel Brazdil2

1 University of Beira Interior, HULTIG? ? ?, 6200-001 Covilhã, Portugal,
{jpaulo,ddg}@hultig.di.ubi.pt,

http://hultig.di.ubi.pt/
2 University of Porto, NIIAD†,

4150-190 Porto, Portugal,
http://www.niaad.liacc.up.pt/

Abstract. Paraphrasing constitutes a corner stone in many Natural
Language Processing fields like monolingual text-to-text generation and
automatic text summarization. Indeed, aligned monolingual corpora are
likely to boost the learning process of text-to-text generation models. A
Paraphrase learning strategy can be defined as a two-step process: (1)
identifying and extracting related sentence pairs from on-line comparable
corpora (for example sentences that convey the same information but yet
are written in different forms) and (2) applying learning methodologies
over the extracted material to induce text-to-text rewriting rules. In this
paper, we compare different lexical distance metrics for the identification
of related sentences, i.e. paraphrase candidates. In particular, we discuss
how different metrics lead to the identification of different types of para-
phrases. Finally, the comparisons and discussions give relevant insights
towards automatic generation of paraphrase corpora.

1 Introduction

Monolingual text-to-text generation is an emerging research area in Natural Lan-
guage Processing, as described by [1]. Unlike in traditional concept-to-text gen-
eration, text-to-text generation applications take a text as input and transform
it into a new text satisfying specific constraints, such as length in summarization
[8, 10, 11, 22, 1, 13] or style in text simplification [4, 3, 12, 17]

Such research fields usually rely on monolingual comparable text corpora,
such as paraphrase corpora, which tend to be very difficult to be supplied by hu-
mans. Therefore, automatic processes for the construction of such corpora are a
critical issue. In fact, text-to-text generation is a particularly promising research
direction given that there are naturally occurring examples of comparable texts
that convey the same information yet are written in different styles. Web news
stories are an obvious example of these non-parallel comparable corpora. In our
case, we aim at learning monolingual asymmetric text-to-text generation models,
specially for the purpose of summarization, in particular sentence compression.

? ? ? Centre for Human Language Technology and Bioinformatics
† Artificial Intelligence and Data Analysis Group



2

In this context, a collection of sentence pairs where one is a simplified version
from the other will be a valuable resource. So, presented with such texts, we are
interested in efficiently identifying and extracting sentence pairs that convey the
same information, thereby building a training set of rewriting examples i.e. a
paraphrase corpus. These pairs of sentences share almost the same meaning, but
contain different lexical elements and possibly different syntactic structures. The
issue of paraphrase detection from texts is complex, since we may have sentence
pairs that almost do not share any lexical similarity but are in fact paraphrases,
as described in [2]. So far, we are only interested on efficient surface methods for
paraphrase detection.

However, the unsupervised methodologies proposed so far [1, 7] are not well
tailored for the reality and special needs of paraphrase detection, showing a ma-
jor drawback, by extracting quasi-exact or even exact match pairs of sentences.
This is mainly due to the fact that they rely on classical string similarity mea-
sures such as the Edit Distance in the case of [7] and word overlap for [1]. Such
pairs are obviously useless for us, since we are interested in learning sentence
compression patterns.

In this paper, we compare a set of string similarity metrics for paraphrase
extraction and also suggest a new metric category3, to serve our particular needs.
This metric family was thought to deal with the classical metrics limitations
and perform efficiently. We show that it competes well and even outperforms
all state-of-the-art metrics both in the general case where exact and quasi-exact
pairs do not occur and in a more realistic scenario, where exact and quasi-exact
pairs occur (like in web news stories). For convenience in writing, we denote this
family as the LogSim family.

In fact, the LogSim family extracts a great deal of asymmetric entailed sen-
tence pairs. In such a pair 〈Sa, Sb〉 sentence Sa entails sentence Sb (Sa D Sb),
but Sb does not entail Sa (Sa 5 Sb), or vice-versa:

Sa: The control panel looks the same but responds more quickly to commands

and menu choices.

Sb: The control panel responds more quickly.

This particular case is much more challenging for classical string similarity
measures that have been conceived for exact match of string pairs.

2 Related Work

The issue of finding paraphrases in monolingual comparable corpora is recently
becoming more and more relevant as researchers realize the importance of such
resources for Information Retrieval, Information Extraction, Automatic Text
Summarization and Automatic Text Generation [10, 11, 22, 1, 13, 17].

3 It is a parameterized set of metrics, not just one.



3

In particular, three different approaches have been proposed for paraphrase
detection: unsupervised methodologies based on lexical similarity [1, 7], super-
vised methodologies based on context similarity measures [2] and methodologies
based on linguistic analysis of comparable corpora [9].

[7] endeavored a work to find and extract monolingual paraphrases from
massive comparable news stories. They use the Edit Distance (also known as
Levenshtein Distance [14]) and compare it with an heuristic derived from Press
writing rules that considers initial sentences, from equivalent news stories, as
paraphrases. The evaluation shows that the data produced by the Edit Distance
is cleaner and more easily aligned than by using the heuristic. However, using
word error alignment rate (AER), a metric borrowed from statistical machine
translation [18], results show that both techniques perform similarly.

[1] used the simple word n-gram (n = 1, 2, 3, 4) overlap measure in the con-
text of paraphrase lattices learning. In particular, this string similarity measure
is used to produce clusters of paraphrases using hierarchical complete-link clus-
tering. This metric is usually used for string comparison in Natural Language
Processing applications [23, 16]. We will see in section 6 that simple word n-gram
overlap also performs well for our purpose.

More deepening techniques rely on context similarity measures such as [2].
They find sentence alignments in comparable corpora by considering sentence
contexts (local alignment) after semantically aligning equivalent paragraphs. To
combine the lexical similarity4 and the proximity feature, local alignments are
computed on each paragraph pairs using dynamic programming. Although this
methodology shows interesting results, it relies on supervised learning tech-
niques, which need huge quantities of training data that may be scarce and
difficult to obtain.

Others, such as [9], go further by exploring harvesting linguistic features
combined with machine learning techniques to propose a new text similarity
metric. Once again, it is a supervised approach and also heavily dependent on
valuable linguistic resources which are usually not available for the vast majority
of languages. We agree on the fact that linguistic resources may improve accuracy
and accordance with human judges but they shorten the application of such
systems to very few languages.

3 Metrics Overview

In the literature [14, 19, 1], we can find the Levenshtein Distance [14] and the
Word N-Gram Overlap Family of similarity measures [19, 1]. Indeed in the latter
case, some variations of word n-gram overlap measures are proposed but not
clearly explained. In this section, we will review all the existing metrics that
may be conveniently adapted and used for surface paraphrase pairs detection.

4 With the cosine similarity measure.



4

3.1 The Levenshtein Distance

This metric, also known as Edit Distance, was created for string similarity com-
putation. Considering two strings, the metric computes the number of character
insertions, deletions and substitutions that would be needed to transform one
string into the opposite [14]. It was adapted for sentence proximity calculation
by [7] as a surface metric for paraphrase detection on monolingual parallel texts.
Within sentences, words are considered as characters.

As a consequence, an evident problem arises from using the Edit Distance for
sentence proximity calculation, since there are pairs that are true paraphrases,
however, as they contain high lexical alternations or different syntactic struc-
tures they are likely to receive high distance values. This indicates low inter-pair
relatedness and erroneous paraphrase classification. In practice, the pair will not
be identified and extracted. For example, it is unlikely that sentences (1) and (2)
would be extracted as paraphrases, since their Edit Distance shows high value.

(1) Due to high energy prices, our GDP may continue to fall, said Prime Min-

ister, early morning.

(2) Early morning, Prime Minister claim that our GDP will continue to fall,

due to growing energy prices.

3.2 The Word N-Gram Family

In fact, there exist not only one, but a family of text similarity measures based
on word n-gram overlap that have been used to measure text proximity, like
summary quality evaluation (BLEU and ROUGE). Sometimes it is not clear or
unspecified which word n-gram version is used. In fact, two metrics are usually
found: the Word Simple N-gram Overlap and the BLEU/ROUGE Metric.

Word Simple N-gram Overlap: This is the simplest metric that uses word
n-gram overlap between sentences. For a given sentence pair, the metric counts
how many 1-grams, 2-grams, 3-grams, ..., N-grams overlap. Usually N is chosen
equal to 4 or less [1]. Let’s name this counting function Countmatch(n-gram). For
a given N > 1, a normalized metric that equally weights any matching n-gram
and evaluates similarity between 2 sentences Sa and Sb, is shown in Equation 1:

NGsim(Sa, Sb) =
1
N
∗

N∑
n=1

Countmatch(n-gram)
Count(n-gram)

(1)

where the function Count(n-gram) counts the maximum number of n-grams that
exist in the shorter sentence as it rules the max number of overlapping n-grams.



5

The BLEU/ROUGE Metric: The BLEU metric was introduced by [19] for
automatic evaluation of machine translation, and was after adapted to auto-
matically evaluate summaries and subsequently renamed as ROUGE by [5]. It is
clear that these metrics can easily be adapted to calculate similarity between two
sentences as they are based on string overlaps. When this adaptation is taken
into account, both BLEU and ROUGE are transformed into the same metric. In
particular, they were used to evaluate precision (BLEU) and recall (ROUGE),
by considering n-gram matches between a text (a translation or a summary),
and a set of candidate texts. It is just a slight difference of sums that gives the
difference. In our case, we just have two texts (the two sentences, not a set of
candidate texts or reference summaries). Therefore the adapted two metrics are
the same. We call it the BLEUadapted metric and it is shown in equation 2:

BLEUadapted =
1
N
∗ exp[

N∑
n=1

log
∑

n-gram

Countmatch(n-gram )
Count(n-gram )

] (2)

The Countmatch(n-gram) function counts the number of exclusive or no-exclusive
n-grams co-occurring between the two sentences, and the function Count(n-gram)
the maximum number of n-grams that exist in the shorter sentence5.

4 The LogSim family

In our main research topic (Automatic Sentence Compression) paraphrase cor-
pora are relevant to induce compression models, as in [11, 22, 1, 13]. As we al-
ready told, in the context of our work, we are especially interested in building
asymmetric paraphrase corpora.

4.1 Main Motivation

We propose the automatic construction of a huge paraphrase corpus, a valuable
resource for research topic. It is not the first work in automatic paraphrase corpus
construction [1, 7] but it is the only one that clearly addresses the problems of
existing string similarity metrics. Indeed, when applying existing metrics for
paraphrase detection in real-world conditions like in Web news stories, most of
the results are exact or quasi-exact match pairs of sentences. Such results are
obviously useless, since we are interested on asymmetric paraphrases, where one
sentence contains more information, possibly irrelevant, than the other.

For that purpose, we designed a new metric family to detect paraphrases
that avoids the extraction of exact and quasi-exact matches and outperforms
state-of-the-art metrics in most of the evaluations presented in 6. In fact, four
main premises guided our research: (1) Achieve maximum automation in corpus
construction - minimum or even no human intervention, with high reliability, (2)

5 In our experiments, we will only show the results with no-exclusive n-grams as results
were worst with exclusive n-grams.



6

Penalize equal and almost equal sentences - they are not useful for our research
needs, but frequent in real-world situations, (3) Consider pairs having a high
degree of lexical reordering, and different syntactic structure and (4) Define a
computationally fast and well founded metric.

The basic idea of the LogSim family lays on the notion of exclusive lexical
links between pairs of sentences, as shown in figure 1.

Fig. 1. Links between a pair of sentences extracted from Web news stories.

It is another form to think about 1-gram exclusive overlap. If a link is es-
tablished between sentence Sa and sentence Sb, for the word w, then other
occurrences of word w in sentence Sa will engage a new link to sentence Sb if
there exists at least one more occurrence of w in Sb, besides the one which is
already connected.

4.2 LogSim

We define the number of links between the two sentences as λ and the number of
words in the longest sentence as x. The fraction λ

x in [0, 1] indicates a normalized
lexical connectivity among sentences, by the longest sentence. As λ

x −→ 1, it is
more likely that both sentences are equal, and with λ

x = 1, they are exactly
equal. Remark that even if the shortest sentence is strictly contained in the
longest one, we have λ

x < 1
To calculate the LogSim metric, LogSim(., .), we first evaluate the function

L(x, λ) as in Equation 36

L(x, λ) = − log2(
λ

x
) (3)

Then the LogSim(., .) is obtained as in Equation 4 ensuring that the function
range lays in the interval [0, 1]. The logarithm is used as a mechanism to gradually
penalize sentence pairs that are too similar, returning exactly zero when we have
an exact match.

LogSim(Sa, Sb) =


L(x, λ) if L(x, λ) < 1.0

e−k∗L(x,λ) otherwise
(4)

6 When λ = 0, L(x, λ) = 0.



7

The main objective of the second branch e−k∗L(x,λ) is to penalize pairs with
great dissimilarities, since in this case λ

x −→ 0 and naturally L(x, λ) −→ +∞.
For example, if x = 30, y = 5 and λ = 4 (y is the number of words in the shortest
sentence), we get L(x, λ) = 2.9068 and the final LogSim(., .) value is repositioned
in [0, 1] with a low value of 0.00039. The k value is a positive parameter used to
boost the penalization branch. In our experiments, we used k = 2.7. In fact, the
greater the k, the greater the penalization will be for dissimilar pairs.

4.3 Expanded LogSim

The L(x, λ) function, defined in the previous subsection, seems to be independent
from the number of words in the shorter sentence y. This is not completely true
since λ ≤ y. However, one may thing about considering a broader function that
also depends explicitly on y. The natural idea that follows is to consider λ

y and
also applying the log2 mechanism for high-similarity penalization, i.e L(y, λ).
So, a new function L(., ., .) depending on the tree parameters x, y and λ could
be a linear interpolation of L(x, λ) and L(y, λ), as shown in Equation 5:

L(x, y, λ) = −α ∗ L(x, λ)− β ∗ L(y, λ) (5)

where α and β are such that α ∈ [0, 1] and α = 1− β, i.e weighting factors. Re-
mark that L(x, y, λ) = L(x, λ) when α = 1. By varying the α weights different
values of the function L(x, y, λ) can be obtained.

Similarly to the LogSim(., .), in order to ensure that the function range lays in
the interval [0, 1], we define the LogSimX(., .) in equation 6.

LogSimX(Sa, Sb) =


L(x, y, λ) if L(x, y, λ) < 1.0

e−k∗L(x,y,λ) otherwise
(6)

In particular, we will show the results obtained for α = 0.25, 0.5, 0.75, in
section 6.

4.4 Complexity

The LogSim family was conceived to be as simple and efficient as possible, since
no digram, trigram or n-gram (n > 1) is computed. Only unigrams (words) are
taken into account to calculate the λ value (number of links between sentences).
In the worst case, this computation is done in Θ(x∗y) time - when the sentences
are completely different, i.e. there is no link among them. In that case, we com-
pute x∗y comparisons i.e. each word in one sentence is compared with each word
in the other. In the best situation the computation will take only Θ(y) time. This
is the case when the shortest sentence is a prefix of the longest one. However,
these are extreme situations and the real complexity lays between these two -
Θ(y) ≤ Θ(LogSim) ≤ Θ(x ∗ y). Similarly, the word Edit Distance takes at least



8

Θ(x ∗ y) time complexity by using the commonly-used bottom-up dynamic pro-
gramming algorithm. On the opposite, any N-gram based metric requires more
computations: Θ(N ∗ x ∗ y), where N is the maximum number of N-grams con-
sidered. For example, if N = 3 only unigrams, bigrams and trigrams are counted
which takes Θ(x ∗ y) + Θ((x− 1) ∗ (y − 1)) + Θ((x− 2) ∗ (y − 2)) = Θ(3 ∗ x ∗ y)
operations. Empirical computations, realized over huge text collections, sup-
port these statements, showing considerable time differences in real-world condi-
tions. In conclusion, we may abusively state that Θ(LogSim) = Θ(LogSimX) ≤
Θ(Edit) ≤ Θ(Ngram).

5 The Corpora Set

Two standard corpora were used for comparative tests between metrics: The Mi-
crosoft Research Paraphrase Corpus [7] and a corpus supplied by Daniel Marcu
that has been used for research in the field of Sentence Compression [11, 13]. By
adapting these corpora we created three new corpora to serve as a benchmark
for our specific purpose.

5.1 The Microsoft Paraphrase Corpus

In 2005, Microsoft researchers Dolan, Brocket, and Quirck [7] published the first
paraphrase corpus containing 5801 pairs of sentences with 3900 tagged as “se-
mantically equivalent” or true paraphrases. Sentences were obtained from mas-
sive parallel news sources and tagged by 3 human raters according to guidelines
described in [7]. We will refer to this corpus as the label {MSRPC}.

5.2 The Knight and Marcu Corpus.

The corpus used by Kevin Knight and Daniel Marcu in their Sentence Compres-
sion research work [11], contains 1087 sentence pairs, where one sentence is a
compressed or summarized version of the other one. This corpus was produced
completely manually from pairs of texts and respective summaries. We label
{KMC} this corpus.

5.3 The Corpora Used

One major limitation with the {KMC} corpus is that it only contains posi-
tive pairs. Therefore it should not be taken as such to perform any evaluation.
Indeed, we need an equal number of negative pairs of sentences to produce a
fair evaluation for any paraphrase detection metric. Although the {MSRPC}
corpus already contains negative pairs, they are only 1901 against 3900 positive
examples. To perform an equitable evaluation, we first expanded both corpora
by adding negative sentence pairs selected from Web news corpora so that they
have the same number of positive and negative examples and also created a new
corpus based on the combination of the {MSRPC} and the {KMC}.



9

The {MSRPC ∪ X−
1999} Corpus: This new derived corpus contains the

original {MSRPC} collection of 5801 pairs (3900 positives and 1901 negatives)
plus 1999 extra negative sentences (symbolized by X−

1999), selected from Web
news stories. So we end with 3900 positive pairs and 3900 negative ones.

The {KMC ∪ X−
1087} Corpus: From the {KMC}, we derived a new corpus

that contains its 1087 positive pairs plus a set of negative pairs, in equal number,
selected from Web news stories. We named this new corpus {KMC ∪ X−

1087},
where the X−

1087 stands for extra negative paraphrase pairs (1087 in this case).

The {MSRPC+ ∪ KMC ∪ X−
4987} Corpus: Finally we decided to build a

bigger corpus that gathers the positive {MSRPC} part i.e. 3900 positive exam-
ples, and the 1087 positive pairs of sentences from the {KMC} corpus, giving
a total of 4987 positive pairs. To balance these positive pairs we added an equal
number of negative pairs, selected in a same manner as described previously.
We labeled this wider corpus the {MSRPC+ ∪KMC ∪X−

4987} corpus. In this
corpus, we intentionally ignored the {MSRPC} negative pairs as many pairs
that are labeled negative, following the guidelines expressed in [7], are in fact
useful paraphrases.

6 Results

This work makes a comparative study between metrics for paraphrase identifi-
cation, including a new family of metrics (LogSim) for asymmetric paraphrase
detection. A new benchmark of paraphrase test corpora was also proposed and
used for metric testing.

In order to evaluate the results of each metric over each corpus, we computed
F-Measure and Accuracy. The results were calculated by averaging the 10 F-
Measure and Accuracy values obtained from a 10-fold cross validation test. For
every fold, the best threshold was found on the 9

10 training data and then used
on the 1

10 test block to measure the correspondent F-Measure and Accuracy. The
results for all measures except the LogSimX7 are presented in Table 1.

Table 1. F −Measure and Accuracy results obtained.

A A B B C C
Fβ Accuracy Fβ Accuracy Fβ Accuracy

Edit 74.41% 67.67% 70.65% 68.02% 80.98% 79.02%
NGsim 78.06% 73.15% 94.66% 94.47% 91.92% 91.79%
BLEU 70.77% 66.17% 82.39% 78.89% 76.79% 74.13%
LogSim 80.43% 78.19% 92.14% 92.58% 97.12% 97.12%

7 A specific analysis is made in Table 2.



10

The F-measure and the Accuracy are respectively defined in Equation 7 and
9. In particular, the experiments with the F-Measure were made with β = 1.

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
(7)

with

precision =
TP

TP + FP
, recall =

TP

TP + FN
(8)

where TP are True Positives, TN True Negatives, FP False Positives and FN
False Negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

The results evidenced in Table 1 show that the LogSim outperforms all state-
of-the-art metrics over all corpora, except on B corpus where NGsim achieved
better results. However, it is important to observe that this corpus is the smallest
one (2174 pairs).

As described in subsection 4.3, an expanded version of LogSim, the LogSimX
has also been experimented and the results are shown in Table 2 for α = 0.25,
α = 0.5, and α = 0.75. This means that in the first case more weight is given
to λ

x , in the second λ
x and λ

y are equally weighted, and in the last case more
relevance is given to factor λ

y .

Table 2. F −Measure and Accuracy results obtained.

A A B B C C
Fβ Accuracy Fβ Accuracy Fβ Accuracy

LogSimXα=0.25 80.74% 77.63% 98.67% 98.66% 98.31% 98.30%
LogSimXα=0.50 80.94% 78.19% 98.47% 98.47% 98.49% 98.48%
LogSimXα=0.75 80.68% 78.58% 96.48% 96.50% 97.98% 97.96%

The conclusion from Table 2 is that the LogSimX performs better than the
LogSim and is best tailored for asymmetric pair detection, since better results
are obtained even over the B corpus which contains the type of pairs we want to
identify. This shows that the combination of both components λ

x and λ
y achieves

better results than using only the first one. Moreover, the LogSimX shows im-
proved results over all existing state-of-the-art metrics.

The BLEU8 metric and the Edit Distance obtain the worst results over all
corpora. The BLEU performed better only over the B corpus, where the positive
pairs are all asymmetric, i.e one sentence is a compressed version of the other one.
This is comprehensible, since such pairs generate great dissimilarity values when
8 This is the BLEUadapted as described in subsection 3.2



11

the Edit Distance is applied. Remark that LogSimXα=0.5 performs at 98.47%
in this corpus. The Edit Distance gives better results than the BLEU metric
for the A corpus as it contains more near string matches as positive examples.
Remember that this corpus was created with the Edit Distance guidance.

Finally, the C corpus is a more general and realistic corpus, containing pairs
from different types: symmetric, asymmetric, quasi-equal, and completely dis-
similar. We only remark that in this corpus LogSimXα=0.5 correctly classified,
on average, 98.48% of all the 9974 sentence pairs. In fact, it shows systemati-
cally better F-Measure and Accuracy measures over all other metrics showing
an improvement of (1) at least 2.88% in terms of F-Measure and 5.04% in terms
of Accuracy and (2) at most 3.81% in terms of F-Measure and 4% in terms of
Accuracy compared to the second best metric which is also systematically the
NGsim similarity measure.

7 Conclusion and Future Work

In this paper, we made a comparative study among a set of similarity metrics
for paraphrase identification and extraction in text corpora. Some of these were
already used for the same task. However, in order to be complete, we proposed a
new similarity metric family for asymmetric paraphrase detection - the LogSim
family. We also proposed a new benchmark of paraphrase test corpora and tested
all state-of-the-art metrics on these corpora. One main and general conclusion
is that the LogSimX performs better than any other metric, over all corpora
either in terms of F-Measure and Accuracy. The Levenshtein Distance [14] per-
forms poorly over corpora with high lexical and syntactic diversity unlike the
BLEU measure. However, when paraphrases are almost string matches, the Edit
Distance outperforms the BLEU measure.

In the future we will try to insert tf.idf [21] information in our metric, as
we believe that word links between sentences should have distinct weights. In-
deed, it is different to have a match between determinants (with low tf.idf) or
between verbs or nouns/names (with high tf.idf). Verbs and nouns/names ob-
viously convey relevant information about the sentence while it is not the case
for determinants. We may also integrate the notion of content character n-grams
that can be extracted from monolingual corpora as in [6].

8 Acknowledgement

We are grateful to Daniel Marcu for providing us with his corpus and we would
also thank the Portuguese Fundação para a Ciência e a Tecnologia agency for
funding this research (Reference: POSC/PLP/57438/2004).

References

1. R. Barzilay and L. Lee: Learning to Paraphrase: An Unsupervised Approach Using
Multiple-Sequence Alignment. In Proceedings of Human Language Technology and



12

North American Chapter of the Association for Computational Linguistics (HLT-
NAACL 2003), Edmonton, Canada, 2003.

2. R. Barzilay and N. Elhadad: Sentence Alignment for Monolingual Comparable Cor-
pora. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP 2003), pages:25-33, Sapporo, Japan, 2003.

3. J. Carroll, G. Minnen, D. Pearce, Y. Canning, S. Devlin and J. Tait: Simplifying
Text for Language-Impaired Readers, In Proceedings of the 9th Conference of the
European Chapter of the Association for Computational Linguistics (EACL 1999),
Bergen, Norway, 1999.

4. R. Chandrasekar and S. Bangalore: Automatic Induction of Rules for Text Simpli-
fication, Knowledge-Based Systems, 10(3):183190, 1997.

5. Chin-Yew Lin: ROUGE: A Package for Automatic Evaluation of Summaries, In Pro-
ceedings of Workshop on Text Summarization Branches Out (ACL 2004), Barcelona,
Spain 2004

6. G. Dias, S. Guilloré and J.G.P. Lopes: Extraction Automatique d’Associations
Textuelles à Partir de Corpora Non Traités, In Proceedings of 5th International
Conference on the Statistical Analysis of Textual Data, pages:213-221, 2000.

7. W.B Dolan, C. Quirck and C. Brockett: Unsupervised Construction of Large Para-
phrase Corpora: Exploiting Massively Parallel News Sources, In Proceedings of 20th
International Conference on Computational Linguistics (COLING 2004), Geneva,
Switzerland, 2004.

8. G. Grefenstette: Producing Intelligent Telegraphic Text Reduction to Provide an
Audio Scanning Service for the Blind, In Proceedings of AAAI spring Workshop on
Intelligent Text Summarization, Palo Alto, USA, 1998.

9. V. Hatzivassiloglou, J.L. Klavans and E. Eskin: Detecting Text Similarity over Short
Passages: Exploring Linguistic Feature Combinations via Machine Learning, In Pro-
ceedings of Empirical Methods in Natural Language Processing and Very Large Cor-
pora (EMNLP 1999), University of Maryland, USA, 1999.

10. H. Jing and K. McKeown: Cut and Paste based Text Summarization, In Proceed-
ings of 1st Meeting of the North American Chapter of the Association for Computa-
tional Linguistics, pages:178-185, Seattle, USA, 2000.

11. K. Knight and D. Marcu: Summarization Beyond Sentence Extraction: A Prob-
abilistic Approach to Sentence Compression. Artificial Intelligence, 139(1):91-107,
2002.

12. M. Lapata: Probabilistic Text Structuring: Experiments with Sentence Ordering, In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), Sapporo, Japan, 2003.

13. M. Le Nguyen, S. Horiguchi, A. Shimazu and B. Tu Ho: Example-based Sentence
Reduction using the Hidden Markov Model, ACM Transactions on Asian Language
Information Processing (TALIP), 3(2):146-158, 2004.

14. V. Levenshtein: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals., Soviet Physice-Doklady, 10:707-710, 1966.

15. C.Y. Lin and E.H. Hovy: Automatic Evaluation of Summaries Using N-gram Co-
Occurrence Statistics, In Proceedings of Human Language Technology and North
American Chapter of the Association for Computational Linguistics (HLT-NAACL
2003), Edmonton, Canada, 2003.

16. L.V. Lita, M. Rogati, A. Lavie: BLANC: Learning Evaluation Metrics for MT,
In Proceedings of Human Language Technology and Empirical Methods in Natural
Language Processing Joint Conference (HLT-EMNLP 2005), Vancouver, Canada,
2005.



13

17. Marsi, E. and E. Krahmer: Explorations in Sentence Fusion, In Proceedings of
the 10th European Workshop on Natural Language Generation, Aberdeen, Scotland,
2005.

18. F.J. Och, H. Ney: A Systematic Comparison of Various Statistical Alignment Mod-
els, Computational Linguistics, 29(1):19-51, 2003.

19. K. Papineni, S. Roukos, T. Ward, W.-J. Zhu: BLEU: a Method for Automatic
Evaluation of Machine Translation, IBM Research Report RC22176, 2001.

20. E. Polak: Computational Methods in Optimization, New York Academic Press,
1971.

21. G. Salton and C. Buckley: Term Weighting Approaches in Automatic Text Re-
trieval, Information Processing and Management, 24(5):513-523, 1988.

22. Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman: Automatic Paraphrase Ac-
quisition from News Articles, In Proceedings of Human Language Technology (HLT
2002), Sao Diego, USA, 2002.

23. J. Sjöbergh and Kenji Araki: Extraction based summarization using a shortest path
algorithm, In Proceedings of 12th Annual Language Processing Conference (NLP
2006), Yokohama, Japan, 2006.

24. M. Yamamoto and Church, K.: Using Suffix Arrays to Compute Term Frequency
and Document Frequency for all Substrings in a Corpus, Computational Linguistics,
27(1):1-30, 2001.


