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Abstract. Depression is a prevalent mental health disorder whose var-
ied and comorbid symptom presentation complicates timely and ac-
curate diagnosis. This study evaluates modern encoder- and decoder-
based Large Language Models (LLMs) for automated depression symp-
tom estimation using the DAIC-WOZ dataset. We compare In-Context
Learning (ICL) strategies (zero-shot, few-shot, chain-of-thought) against
parameter-efficient fine-tuning (PEFT/LoRA) and linear probing tech-
niques. Surprisingly, zero-shot ICL achieves new state-of-the-art results,
outperforming fine-tuning approaches and prior benchmarks.
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1 Introduction

Depression poses a significant health challenge, with its complex symptom pre-
sentation hindering accurate diagnosis. Early computational efforts primarily
focused on overall severity prediction from clinical interviews [13, 14], lacking
granular symptom insight. A key advancement was proposed by Milintsevich et
al. [12], who predict individual PHQ-8 symptom scores (0-3), offering a more
nuanced assessment aligned with clinical needs. However, initial models faced
limitations like restricted context length.

The emergence of Large Language Models (LLMs), including large encoders
[15] and decoders [4,7], offers new avenues for this symptom estimation task due
to their enhanced context processing and instruction following. While related
work explored domain-specific models [9], specific parameter-efficient fine-tuning
(PEFT) methods [10], or structural information [3], a systematic evaluation of
modern general-purpose LLMs across diverse learning paradigms for the specific
task of symptom-level severity estimation [12] remains absent.

This study addresses this gap by evaluating the effectiveness of various mod-
ern LLMs on the DAIC-WOZ dataset [6] for the symptom estimation task. We
explore two main paradigms: In-Context Learning (ICL), including zero-shot,
few-shot [2], and Chain-of-Thought (CoT) prompting [16], and PEFT using
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Low-Rank Adaptation (LoRA) [8], alongside linear probing with various lin-
ear depth. We compare these approaches against previous results, evaluating
encoder- (ModernBERT-base1) and decoder-based (Mistral-7B2, Llama 3 mod-
els34, Gemini-Flash/Pro5, DeepSeek-R1-8B6) LLMs. Performance is analyzed
across binary classification, PHQ-8 score regression, 5-class depression severity
prediction, and individual symptom estimation. Surprisingly, our findings indi-
cate that zero-shot ICL achieves new state-of-the-art results, offering insights
into the utility of LLMs for improving mental health diagnostics.

The code and supplementary materials are available at the following reposi-
tory for reproducibility: https://github.com/HikariLight/depression_estimation.

2 Methodology and Results

We evaluate LLMs for depression symptom estimation on the standard version
of the DAIC-WOZ dataset [6]. The task involves predicting the severity score (0-
3) for each of the eight PHQ-8 symptoms based on clinical interview transcripts
using its standard train, validation, and test splits.

We assess a range of LLMs selected for diverse characteristics: the encoder-
based ModernBERT-base representing an improved legacy architecture; com-
pact, open decoder models suitable for edge deployment like Mistral-7B, Llama
3.1-8B, and Llama 3.2-1B; large state-of-the-art models such as Gemini-Flash/Pro;
and the reasoning-focused distilled DeepSeek-R1-8B.

Backbones are evaluated models under two main configurations. Within In-
Context Learning, we test zero-shot, few-shot (up to 3 examples), and CoT [16]
prompting strategies using deterministic decoding (temperature equals to 0,
beam size equals to 1). Prompts are optimized on the validation set. For the
Fine-Tuning (FT) configuration, we employ PEFT via LoRA and implement
standard fine-tuning of classification heads added to frozen base models (i.e.,
linear probing), exploring both shallow and deep head architectures.

Models are evaluated on the test set using F1-score (macro/micro) for bi-
nary and 5-class depression severity classification, and Mean Average Error
(MAE)/Root Mean Square Error (RMSE) for PHQ-8 score regression. Results
are averaged over five runs with different random seeds. Detailed prompts, full
hyperparameter settings, and comprehensive symptom-level results are provided
in the public repository: https://github.com/HikariLight/depression_estimation.

Table 1 presents the main results for binary classification, PHQ-8 regres-
sion, and 5-class severity classification. Depression score is obtained by summing
all symptoms’ individual scores. For binary classification, all individuals with
1 https://huggingface.co/answerdotai/ModernBERTbase
2 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3 https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
4 https://huggingface.co/meta-llama/Llama-3.2-1B
5 https://blog.google/technology/google-deepmind/google-gemini-ai-update-

december-2024
6 https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

https://github.com/HikariLight/depression_estimation
https://github.com/HikariLight/depression_estimation
https://huggingface.co/answerdotai/ModernBERT-base
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
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Model Binary classif. PHQ regress. 5-class classif.
F1-ma F1-mi MAE RMSE F1-ma F1-mi

Z
er

o-
sh

ot
* DeepSeek-R1-8B 0.62 0.74 3.17 4.88 0.34 0.62

Gemini-1.5-pro 0.64 0.74 3.49 4.53 0.27 0.53
Gemini-2.0-flash 0.84 0.85 3.47 4.17 0.31 0.43
Llama-3.1-8B 0.69 0.72 4.02 5.19 0.41 0.43
Mistral-7B 0.78 0.83 3.45 4.73 0.44 0.55

F
ew

-s
h
ot

DeepSeek-R1-8B-[1S] 0.49(0.05) 0.66(0.10) 4.43(0.97) 5.91(0.71) 0.22(0.06) 0.46(0.15)
Gemini-1.5-pro-[1S] 0.51(0.04) 0.69(0.02) 3.66(0.23) 5.21(0.32) 0.26(0.04) 0.56(0.03)
Gemini-2.0-flash-[1S] 0.75(0.03) 0.79(0.03) 3.23(0.11) 4.22(0.07) 0.33(0.07) 0.51(0.05)
Llama-3.1-8B[1S] 0.71(0.06) 0.77(0.03) 3.4(0.33) 4.74(0.44) 0.33(0.06) 0.57(0.03)
Mistral-7B-[2S] 0.60(0.12) 0.74(0.06) 3.93(0.61) 5.67(0.59) 0.30(0.09) 0.55(0.06)

C
oT

*

DeepSeek-R1-8B 0.62 0.74 3.79 5.28 0.31 0.57
Gemini-1.5-pro 0.66 0.74 3.43 4.51 0.26 0.47
Gemini-2.0-flash 0.74 0.81 3.19 4.23 0.36 0.6
Llama-3.1-8B 0.64 0.74 2.89 4.32 0.33 0.62
Mistral-7B 0.7 0.77 3.68 5.0 0.27 0.51

H
ea

d
-o

n
ly DeepSeek-R1-8B-[D] 0.73(0.06) 0.81(0.03) 3.87(0.60) 5.10(0.70) 0.26(0.05) 0.53(0.05)

Llama-3.1-8B[D] 0.61(0.14) 0.77(0.05) 4.23(0.7) 5.60(0.9) 0.22(0.05) 0.48(0.02)
Llama-3.2-1B-[S] 0.51(0.1) 0.73(0.02) 4.58(0.32) 5.97(0.45) 0.19(0.03) 0.44(0.02)
Mistral-7B-[S] 0.74(0.01) 0.81(0.01) 3.86(0.11) 4.92(0.15) 0.24(0.03) 0.43(0.04)
ModernBERT-[D] 0.48(0.06) 0.70(0.01) 5.50(0.10) 6.60(0.15) 0.14(0.02) 0.31(0.06)

P
E
F
T

DeepSeek-R1-8B-[S] 0.73(0.09) 0.80(0.05) 3.84(0.23) 5.04(0.33) 0.27(0.08) 0.50(0.04)
Llama-3.1-8B[S] 0.67(0.05) 0.77(0.03) 4.0(0.09) 5.33(0.15) 0.22(0.04) 0.46(0.03)
Llama-3.2-1B-[S] 0.61(0.11) 0.74(0.04) 4.53(0.51) 5.73(0.68) 0.21(0.05) 0.43(0.06)
Mistral-7B-[S] 0.70(0.06) 0.79(0.03) 3.74(0.16) 4.83(0.24) 0.25(0.01) 0.48(0.04)
ModernBERT-[S] 0.50(0.05) 0.68(0.02) 5.34(0.05) 6.35(0.14) 0.15(0.03) 0.29(0.05)

S
O

T
A

Agarwal et al. [1] 0.81(0.01) — — — — —
Milintsev. et al. [11] — — 3.59(0.31) — — —
Fang et al. (t) [5] — — 3.61 4.76 — —
Fang et al. (t+v) [5] — — 3.36 4.48 — —
Chen et al. [3]. 0.88∗∗ — — — — —

Table 1: Evaluation results for depression assessment for binary classification, PHQ-8
regression and 5-class depression-level estimation. Best results per strategy are under-
lined, while best overall results are in bold. [D] stands for deep head, [S] for shallow
head and [n] defines the few-shot example count. Maximum results are shown for vari-
able configurations. Standard deviation results are presented over 5 runs to account
for model robustness.
* Zero-shot and CoT use greedy decoding, hence zero standard deviation.
** Chen et al.’s results [3] are on the validation set and as such are not directly com-
parable.
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depression score strictly below 10 are considered non-depressed, the remain-
ing being considered depressed. For 5-class prediction, we use the 5 subclasses
presented in [12], and PHQ regression is computed between the summed up
depression score with the ground truth.
Overall Performance: Gemini-2.0-Flash using zero-shot ICL establishes new
state-of-the-art results for binary classification (F1-macro/micro 0.84/0.85) and
achieves lowest RMSE (4.17) in PHQ-8 regression. Notably, zero-shot ICL gen-
erally outperforms FT approaches across tasks. Few-shot and CoT prompting
do not consistently improve performance over zero-shot ICL. Within FT config-
urations, Mistral-7B with a shallow head (frozen base model) yields best results
among tuned models, while ModernBERT performs poorly.
Symptom-Level Analysis: To understand model behavior at a granular level,
we analyze predicted symptom scores against ground truth labels (see Fig. 17).
Overall, models struggle to accurately estimate no/mild symptoms, but top per-
formers like zero-shot Gemini-2.0-Flash show better alignment for moderate-to-
severe symptom levels, suggesting improved sensitivity to higher severity.
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Fig. 1: Agreement between model-predicted and reported symptom intensity.
Gemini-2.0-Flash is shown in red (dashed), Mistral-7B-Instruct-v0.3 in green
(dotted), while the average true symptom value is shown in dotted blue.

3 Conclusions and Limitations

This study evaluates LLMs for depression symptom estimation on the DAIC-
WOZ dataset, comparing In-Context Learning and Fine-Tuning strategies over
patient-therapist interviews. Results show that zero-shot ICL yields new state-
of-the-art results, surpassing FT approaches and demonstrating the potential of
prompting LLMs for nuanced mental health assessment.

However, limitations including potential dataset overlap in LLM pretraining
and general model biases require careful consideration and further validation on
diverse and private datasets before clinical application. Moreover, LLMs with
prohibitively large parameter counts pose practical constraints, as their deploy-
ment in real-world clinical settings is hindered by intensive computing demands,
lack of privacy safeguards for sensitive medical data, and the non-frugality of such
models, making them unsuitable for resource-limited or privacy-critical health-
care environments.
7 More details are given in the supplementary materials at the following repository:

https://github.com/HikariLight/depression_estimation.

https://github.com/HikariLight/depression_estimation
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