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ARTICLE INFO ABSTRACT

Keywords: Healthcare decision-making requires not only accurate predictions but also insights into how factors influence
Causal Bayesian networks patient outcomes. While traditional machine learning (ML) models excel at predicting outcomes, such as
Healthcare identifying high-risk patients, they are limited in addressing “what if” questions about interventions. This study
Probability trees

introduces the Probabilistic Causal Fusion (PCF) framework, which integrates Causal Bayesian Networks (CBNs)
and Probability Trees (PTrees) to extend beyond predictions. PCF leverages causal relationships from CBNs to
structure PTrees, enabling both the quantification of factor impacts and the simulation of hypothetical interven-
tions. The framework is evaluated on three clinically diverse, real-world datasets, MIMIC-IV, Framingham Heart
Study, and BRFSS (Diabetes), demonstrating consistent predictive performance comparable to conventional ML
models, while offering enhanced interpretability and causal reasoning capabilities. In contrast to conventional
approaches focused solely on prediction, PCF offers a unified framework for prediction, intervention modelling,
and counterfactual analysis, forming a holistic toolkit for clinical decision support. To enhance interpretability,
PCF incorporates sensitivity analysis and SHapley Additive exPlanations (SHAP). Sensitivity analysis quantifies
the influence of causal parameters on outcomes such as Length of Stay (LOS), Coronary Heart Disease (CHD),
and Diabetes, while SHAP highlights the importance of individual features in predictive modelling. This dual-
layered interpretability offers both macro-level insights into causal pathways and micro-level explanations for
individual predictions. By combining causal reasoning with predictive modelling, PCF bridges the gap between
clinical intuition and data-driven insights. Its ability to uncover relationships between modifiable factors and
simulate hypothetical scenarios provides clinicians with a clearer understanding of causal pathways. This
approach supports more informed, evidence-based decision-making, offering a robust framework for addressing
complex questions in diverse healthcare settings.

Causal inference

1. Introduction Causal ML addresses these gaps by estimating treatment effects and

answering counterfactual questions, such as “How would a patient’s

Effective healthcare requires not just accurate predictions but also a
deeper understanding of the factors that drive patient outcomes. While
traditional machine learning (ML) models are proficient at identifying
patterns and forecasting risks, such as predicting which patients are
more likely to develop a condition, they often fall short in evaluating
how specific interventions might alter these outcomes. This predictive
focus limits their utility in addressing causal questions, such as esti-
mating the impact of treatments or other modifiable factors on patient
trajectories. To bridge this gap, there is a growing need for approaches
that go beyond prediction, enabling the quantification of causal effects
and simulation of intervention outcomes.
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outcome change if a different treatment were administered?” Unlike
traditional ML, which focuses on correlations, causal ML is built on the
foundation of causal inference [1], enabling a deeper understanding of
relationships and supporting evidence-based decision-making [2]. For
instance, traditional ML might predict a patient’s likelihood of develop-
ing diabetes [3], but causal ML can estimate how that likelihood would
change under specific interventions, such as a lifestyle modification or
a new medication [4]. These capabilities are particularly valuable in
healthcare, where understanding cause-effect relationships is critical
for developing targeted interventions [5].
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To support both causal reasoning and practical interpretability, we
propose the Probabilistic Causal Fusion (PCF) framework, which com-
bines Causal Bayesian Networks (CBNs) with ensembles of Probability
Trees (PTrees). CBNs model dependencies between variables using
directed acyclic graphs (DAGs) [1], providing a principled foundation
for causal inference. While CBNs are well-suited for modelling joint
distributions, their global structure can make patient-specific reasoning
paths difficult to interpret in practice.

To address this, PCF incorporates Probability Trees, interpretable,
rule-based models that align more naturally with clinical workflows
[6,7]. Their hierarchical paths provide clear, context-specific deci-
sion rules (e.g., “BMI > 30 — HbAlc > 6.5% — High ICU stay
risk”), which clinicians can easily follow and validate. These paths also
capture context-specific dependencies that are challenging to express
compactly in CBNs, as shown in staged tree learning [8]. In addition
to their transparency, PTrees are computationally efficient and well-
suited to ensemble learning strategies such as bootstrap aggregation,
which improves robustness and generalisability. The main limitation of
PTrees, however, lies in their dependence on predefined variable order-
ings, a process that traditionally relies on expert input and introduces
subjectivity, inefficiency, and inconsistency.

This reliance on expert-defined sequences not only introduces bias
but also limits scalability. To overcome this, PCF leverages the causal
structure learned from CBNs to inform variable ordering, an essential
step in guiding PTree construction. While CBNs can provide a topo-
logical ordering from the learned graph structure, recent works show
that structure learning algorithms are sensitive to dataset column order,
leading to instability in learned graphs [9]. To mitigate this, PCF aggre-
gates outputs from multiple CBNs learned under varying conditions and
derives a consensus topological ordering based on stable, frequently
occurring edges. This data-driven ordering aligns PTree decision paths
with inferred causal dependencies, reducing reliance on expert spec-
ification and preserving clinical interpretability. Clinicians may still
refine the ordering locally if desired, but without needing to manually
reconstruct the full structure. The result is a hybrid approach that
balances automated discovery with domain expertise, enhancing both
robustness and transparency in complex, high-dimensional datasets
such as electronic health records.

This hybrid approach is particularly valuable in clinical settings,
where observational data are abundant and experimental studies are
often impractical. Unlike Randomised Controlled Trials (RCTs), which
are costly and time-consuming, PCF enables causal inference and in-
tervention simulation directly from observational data. By moving
beyond purely predictive models and towards transparent causal rea-
soning, PCF supports clinicians in exploring not just what might hap-
pen, but how and why, and how it could be changed. These capa-
bilities are made possible by PCF’s hierarchical design, which brings
together the global structure-learning strength of CBNs with the local
interpretability of PTrees.

The hierarchical architecture of PCF enhances its clinical relevance
by combining the complementary strengths of CBNs and PTrees. CBNs
are used to uncover dependencies among clinical variables, such as
comorbidities and temporal trends, while PTrees translate these depen-
dencies into interpretable, cohort-specific decision rules. This layered
design supports the integration of heterogeneous data sources, in-
cluding bedside monitoring and structured electronic health records,
into a unified framework for causal reasoning. Rather than claiming
to recover true causal structure with certainty, PCF aligns the struc-
ture of Probability Tree models with the conditional dependencies
inferred by CBNs, dependencies that, under standard assumptions,
encode hypothesised causal relationships through patterns of condi-
tional independence. In doing so, the framework reduces the need for
manually defined variable hierarchies and improves the consistency of
modelling across settings. While domain expertise remains important,
PCF helps mitigate uncalibrated subjectivity by integrating data-driven
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structure learning with opportunities for expert refinement, thereby
enhancing both reproducibility and clinical interpretability.

Traditionally, constructing PTrees has been an iterative process
reliant on domain experts to define variable orderings [7], which
introduces challenges such as:

1. Subjectivity: Expert knowledge may be incomplete or biased,
leading to suboptimal structures.

2. Inefficiency: Manual construction is time-intensive, especially
for complex datasets.

3. Data Inconsistency: Sole reliance on expert-defined structures
can overlook key relationships present in the data.

By employing an ensemble learning approach, PCF mitigates these
limitations, offering a robust and generalisable solution that reduces
overfitting and enhances performance.

Beyond its core modelling capabilities, the PCF framework also
lays the foundation for a centralised causal knowledge repository, an
initiative designed to address several persistent challenges in healthcare
analytics. In particular, it responds to the difficulty many smaller
institutions face in building robust causal models from limited local
data, and to the fragmented nature of causal discovery across the
healthcare sector. By enabling the sharing of pre-trained PCF mod-
els, alongside their underlying causal graphs across organisations, the
framework supports a more collaborative and equitable approach to
model development. This allows smaller centres to build upon validated
causal structures and adapt them to local contexts, rather than starting
from scratch. For example, a large urban hospital (Hospital A) might
train a PCF model on its extensive ICU dataset, producing a validated
causal graph and ensemble of Probability Trees. A smaller regional
hospital (Hospital B), with limited local data, could then reuse this
pre-trained PCF model as a foundation for its own decision support
system. By fine-tuning the model with local data or adapting selected
components, Hospital B can deploy a robust, interpretable tool without
the need for full retraining, thereby accelerating implementation and
improving accessibility in resource-constrained settings.

Crucially, PCF’s modular architecture, separating structure learning
via CBNs from outcome modelling via PTrees, makes it uniquely well-
suited to this kind of distributed refinement. Over time, such a system
could accelerate the translation of causal insights into practice, pro-
mote greater methodological consistency, and support the development
of generalisable models that are responsive to the needs of diverse
healthcare environments.

In this work, we leverage the PCF framework to support prediction,
intervention, and counterfactual analysis in three distinct clinical con-
texts. First, we aim to predict and identify factors associated with the
length of stay in the Intensive Care Unit (ICU). Second, the framework
is applied to assess the risk of Chronic Heart Disease (CHD) and inves-
tigate potential modifiable factors that could mitigate its progression.
Finally, we utilise the framework to predict the risk of diabetes and
analyse the influence of various risk factors on its onset.

The main contributions of this work are summarised as follows:

» We propose a framework, Probabilistic Causal Fusion (PCF), that
combines Causal Bayesian Networks (CBNs) with ensembles of
Probability Trees (PTrees) to enable predictions, interventions,
and counterfactual analysis in healthcare. This integration ad-
dresses the limitations of traditional PTree construction, such as
reliance on domain expertise for variable ordering, by leveraging
causal relationships identified through CBNs.

The use of an ensemble of PTrees improves predictive perfor-
mance and robustness. By balancing the trade-off between bias
and variance, the ensemble approach mitigates risks of overfitting
or underfitting and enhances generalisability.

Methodological refinements are introduced in computing transi-
tion probabilities within the PTree framework. Specifically, data
is partitioned using empirical marginal probabilities, while causal
relationships derived from CBNs inform split decisions, enabling
more data-driven and effective model construction.
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Fig. 1. Different steps involved in the PCF framework. The first module addresses data pre-processing to shape the input required for the CBN. The next module
involves generating individual CBNs and creating a model-averaging graph. Subsequently, the ensemble of PTrees is developed based on the variable order from
the model-averaging graph. The final module involves evaluating the overall performance of PCF.

» The applicability and utility of the PCF framework are demon-
strated through its application to multiple real-world healthcare
datasets.

Existing causal inference methods each offer valuable capabilities:
model-agnostic estimators excel at capturing treatment effect hetero-
geneity, deep learning approaches effectively handle high-dimensional
confounding, and structural causal models provide a principled founda-
tion for reasoning across interventions and counterfactuals. However,
these approaches often fall short in clinical decision support due to lim-
itations in interpretability, scalability, or support for path-specific and
symbolic reasoning. PCF addresses this gap by integrating the graphical
structure of Causal Bayesian Networks with the local interpretability
of Probability Trees, enabling transparent, patient-level inference. By
supporting interventional and counterfactual analysis within a scalable,
modular framework, PCF aims to provide clinicians with both the
rigour and clarity needed for practical causal reasoning.

The structure of the paper is as follows. Section 2 provides an
overview of the relevant literature, establishing the context and mo-
tivation for this work. Section 3 describes the proposed framework
in detail, including the steps involved in its construction and imple-
mentation. Section 4 presents the application of the framework to
three distinct clinical case studies, while Section 5 discusses the results
obtained from these applications. Finally, Section 6 provides conclusive
remarks and directions for future work.

2. Relevant works
2.1. Traditional ML vs. Causal ML

Traditional ML has become a cornerstone in healthcare for tasks
such as risk prediction, patient stratification, and outcome forecast-
ing [10,11]. These models are highly effective at identifying patterns
and correlations, enabling predictions such as the likelihood of disease
onset or hospital readmissions [12-14]. However, traditional ML lacks
the ability to answer counterfactual questions or estimate treatment
effects, as it is inherently focused on predictive accuracy rather than
causal reasoning [15,16].

In contrast, causal ML seeks to address “what if” questions by
estimating the causal effect of interventions on outcomes. For instance,
rather than simply predicting the probability of diabetes onset, causal
ML can assess how this probability might change if a patient adopts a
new medication or lifestyle modification [17,18]. These capabilities en-
able healthcare providers to explore counterfactual scenarios and make
data-driven decisions that go beyond prediction to inform treatment
planning and resource allocation.

Causal ML requires additional considerations compared to tradi-
tional ML, such as the need to account for unobservable outcomes
and confounding variables. For example, the “fundamental problem
of causal inference” [1,19] states that only factual outcomes under a
given treatment are observed, while counterfactual outcomes remain
unobserved. Estimating causal effects, therefore, requires more than
just assumptions; it depends on having access to a sufficient set of
measured covariates that enable identification, for instance, through
adjustment sets that block all backdoor paths between treatment and
outcome. Moreover, causal models must consider both direct and me-
diated (indirect) effects, as interventions may propagate through the
system in complex ways. For example, a smoking cessation program
might influence diabetes risk indirectly through changes in body mass
index (BMI), necessitating a structured causal framework to capture
such dependencies.

2.2. Applications of CBNs in healthcare

CBNs are a widely used tool in causal ML for modelling rela-
tionships among variables through a directed acyclic graph (DAG)
structure. CBNs allow for the incorporation of prior knowledge and
probabilistic reasoning, making them particularly effective for under-
standing complex dependencies in healthcare data. For instance, Ra-
jendran et al. [20] employed CBNs to integrate risk factor analysis in
breast cancer research, facilitating early detection and risk stratifica-
tion. Shahmirzalou et al. [21] applied CBNs to recurrent breast cancer
data to predict survival outcomes and guide personalised treatment
strategies. Similarly, Jang et al. [22] leveraged CBNs to model risks
associated with radiation therapy, offering support for personalised
oncology care.
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CBNs have also been applied to explore relationships between car-
diovascular risk factors and related conditions, as demonstrated by
Ordovas et al. [23]. These examples highlight the versatility of CBNs
in identifying risk factors, modelling disease progression, and sim-
ulating the effects of interventions. However, while CBNs excel at
representing causal relationships, their construction often requires sig-
nificant domain expertise and computational resources, which may
limit scalability.

2.3. Probability Trees (PTrees) in causal modelling

Probability Trees (PTrees) offer an intuitive and sequential repre-
sentation of probabilistic relationships. In the context of this work, we
adopt a representation where nodes correspond to variable instantia-
tions and branches are labelled by events or outcomes, aligning more
closely with a Moore-style structure in automata theory. This design
choice supports clearer causal interpretation by associating each deci-
sion point (node) with a specific variable and deferring probabilistic
branching to the edges. While alternative formulations exist, such as
Mealy-style trees where transitions depend on both current states and
input labels, our choice is motivated by the need to represent sequential
dependencies and interventions transparently. This structure is par-
ticularly suitable for modelling healthcare processes, where decisions
unfold over time and are influenced by evolving clinical states [6].

Despite their simplicity and expressiveness, PTrees have received
relatively less attention in the machine learning literature compared
to CBNs or structural causal models. Ambags et al. [7] proposed a hy-
brid approach combining probabilistic fuzzy decision trees with causal
reasoning, applying it in two medical case studies to demonstrate its
potential for real-world applications. Traditional PTree construction,
however, often depends on domain expertise to determine variable
orderings. While expert input is valuable, such reliance can introduce
subjectivity and inefficiency, and expert-defined orderings may not
always align with empirical dependencies in the data.

The Probabilistic Causal Fusion (PCF) framework addresses these
challenges by integrating ensembles of PTrees with causal orderings
derived from CBNs. These orderings are not treated as absolute ground
truth but as a data-driven basis that can be refined through calibration
with clinical expertise. This hybrid design promotes consistency and re-
producibility, while ensemble methods reduce overfitting and enhance
robustness across heterogeneous patient cohorts.

2.4. Advances in causal ML for healthcare

Recent advances in causal ML demonstrate its potential for im-
proving healthcare decision-making by estimating treatment effects
and simulating counterfactual scenarios. These methods have been
applied to a variety of clinical challenges, from estimating the effects
of medication adherence on diabetes progression to predicting survival
probabilities under different oncology treatment plans [2,5]. By inte-
grating causal ML techniques into clinical workflows, researchers aim
to bridge the gap between prediction and actionable insights, enabling
data-driven strategies for improving patient outcomes.

Building on this foundation, emerging work is exploring how causal
reasoning can be integrated with high-capacity deep learning models.
Nan et al. [24] demonstrate how visual diagnostic patterns used by ex-
pert pathologists can be captured by neural networks in a causally inter-
pretable manner, improving transparency in high-dimensional
histopathology tasks. Complementary advances in causal representa-
tion learning [25] propose methods for isolating relevant features and
estimating counterfactual outcomes in complex image-based settings,
offering pathways to more generalisable and robust clinical models.

However, causal ML comes with its own challenges. Assumptions
about unmeasured confounding, model scalability, and the reliability
of observational data remain critical concerns [26]. Addressing these
limitations through frameworks like PCF, which combine causal rea-
soning with robust predictive modelling, represents an important step
towards leveraging causal ML in diverse healthcare contexts.
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2.5. Comparison with existing causal inference methods

Contemporary causal inference approaches can be broadly classified
into model-agnostic estimators, deep representation learning models,
and structural causal models, each with distinct strengths and limita-
tions. The PCF framework is designed to bridge methodological and
practical gaps across these paradigms.

First, non-parametric ITE estimators such as Causal Forests [27] and
Bayesian Additive Regression Trees (BART) [28,29] provide flexible
estimation of treatment heterogeneity under the unconfoundedness
assumption. While effective at modelling complex treatment-response
relationships, these methods lack model-inherent support for explicit
counterfactual reasoning or principled interventional analysis (e.g., via
do-calculus).

Second, deep causal representation learning methods, including
TARNet and Counterfactual Variational Autoencoders (CEVAE) [30,
31], mitigate confounding by learning latent representations. These
models are particularly suited for high-dimensional observational data,
but they often operate as black boxes, offering limited interpretabil-
ity and no explicit support for tracing causal pathways or executing
symbolic interventions. Moreover, their architectures are typically re-
stricted to binary or single-shot treatments, limiting their applicabil-
ity in scenarios involving multi-valued or sequential interventions, as
commonly encountered in clinical settings.

Third, Structural Causal Models (SCMs) and CBNs [1,32] provide
a rigorous formalism for causal reasoning across all three rungs of
Pearl’s causal hierarchy. However, their expressiveness comes at a
cost: SCMs typically require predefined structural equations or strong
assumptions, such as causal sufficiency and faithfulness, which can be
difficult to validate or scale to high-dimensional, mixed-type datasets.
The PCF framework also inherits these assumptions through its reliance
on CBNs, but it avoids the need for structural equations by using a mod-
ular, tree-based construction that improves computational tractability
and interpretability.

Building on this foundation, PCF combines the structural guidance
of CBNs with a probabilistic tree-based architecture that preserves
conditional dependencies while enabling efficient computation of in-
terventional distributions, P(Y | do(X)). Unlike SCMs, it does not
require full specification of structural functions, and it supports coun-
terfactual inference via a twin-tree construction [6], facilitating patient-
level “what if” reasoning in a transparent format. Through sparsity
constraints and pathwise interpretability, PCF retains the semantic
clarity of graphical models while offering the scalability and flexibility
demanded by real-world healthcare applications.

In essence, PCF occupies a practical middle ground between sym-
bolic and statistical causal methods, combining the interpretability of
graphical models with the non-parametric adaptability of tree-based
learners, while addressing core limitations of existing approaches in
clinical decision support.

3. Methodology-PCF framework

We introduce PCF, a hybrid framework that integrates CBNs with
ensembles of PTrees to support prediction, intervention modelling, and
counterfactual analysis. Traditional PTree construction often depends
on expert-defined variable orderings and empirical transition estimates,
an approach that is labour-intensive, prone to variation across studies,
and difficult to standardise. PCF addresses these limitations by using
structural dependencies derived from CBNs to generate a data-driven
variable ordering that reflects conditional independencies and provides
a reproducible scaffold for tree construction. Importantly, this ordering
defines a partial hierarchy rather than a rigid sequence: it constrains
only those variables for which directional dependencies are inferred,
while leaving flexibility for reordering or excluding variables that are
weakly connected or clinically irrelevant. This design enhances inter-
pretability and computational efficiency without compromising causal
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consistency. Clinicians may still refine the ordering locally to enhance
interpretability, but without the need to redesign the global structure.

In parallel, PCF addresses several practical challenges of CBNs.
While CBNs offer a principled framework for capturing causal depen-
dencies, their global structures can be difficult to interpret at the patient
level and are sensitive to variability in structure learning. PCF mitigates
these issues by averaging across multiple candidate graphs to high-
light stable dependencies, and by embedding these dependencies into
PTrees, where they appear as transparent, rule-based pathways. This
hybrid design improves interpretability and robustness, while ensemble
learning further strengthens predictive performance by balancing bias
and variance across heterogeneous datasets. Although PCF does not
resolve the fundamental problem that no algorithm can guarantee full
recovery of the true causal structure, it provides a more stable and com-
putationally efficient scaffold for building clinically meaningful models.
Fig. 1 outlines the key stages of the PCF pipeline, including data pre-
processing, CBN generation, model-averaging graph construction, and
PTree ensemble development.

3.1. Causal Bayesian Network (CBN) construction

PCF begins by constructing CBNs to uncover causal relationships
among variables and identify directed pathways influencing the target
outcome Y. These causal structures form the foundation for build-
ing PTrees, which translate causal dependencies into explicit decision
paths. Formally, let V = {X|, X,, ..., X,,Y} denote the set of observed
variables, with Y as the outcome of interest. A CBN is defined as a DAG
G = (V, &), where nodes represent variables and edges (X; - X ) EE
encode potential causal influences. The joint distribution over variables
factorises according to the DAG structure as defined in Eq. (1), where
Pa(X;) denotes the set of parent variables of X; in G. The resulting
topology defines a partial ordering that reflects the inferred causal
hierarchy.

n
P(Xy,..., X,) = [ Px; 1 Pax,) ¢h)
i=1
CBNs were chosen as the foundation of PCF due to their theoret-
ical capacity to encode and reason about causal dependencies under
well-established assumptions, including causal sufficiency, the Markov
condition, and faithfulness. Their DAG structure allows for explicit rep-
resentation of conditional independencies, enabling interventional and
counterfactual inference through graphical separation and do-calculus.
The construction of the CBN proceeds through three stages: struc-
ture learning, model averaging and topological sorting.

Structure learning. The construction of the CBN begins with structure
learning, implemented through a suite of established algorithms: Hill
Climbing (HC) [33,34], TABU Search [35], SaiyanH [36], Model-
Averaging Hill Climbing (MAHC) [37], and Greedy Equivalence Search
(GES) [38]. Each of these algorithms explores candidate Directed
Acyclic Graphs (DAGs) in order to identify the network structure G
that maximises a predefined scoring function S(G | data). Formally,
the optimisation problem can be expressed as:

G =arg mgax S(G | data), 2)

where the score S evaluates the goodness of fit between the candidate
graph and the observed data.

Structure learning is performed using the open-source Bayesian
network structure learning system Bayesys [39], which supports target-
aware search, focusing the discovery process on variables with direct
influence over the outcome Y. The selected algorithms are chosen
for their complementary strengths: HC is computationally efficient
but prone to local optima; TABU introduces diversification strategies
to escape local minima; SaiyanH integrates heuristic biasing; MAHC
stabilises solutions through repeated sampling; and GES scales well
to high-dimensional data, though it could be less effective on small
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samples. Also, these algorithms are selected for their capability to
incorporate the target variable during model construction and to han-
dle diverse knowledge approaches, including direct relationships and
forbidden edges [40]. While the selected score-based algorithms learn
DAGs that serve as approximations of the underlying causal struc-
ture under standard assumptions (causal sufficiency, faithfulness, and
acyclicity), they do not provide formal statistical guarantees. These
methods are, however, effective for constructing interpretable causal
scaffolds to support downstream counterfactual analysis. Incorporating
statistical testing to validate or refine edge inclusion represents an
important direction for future enhancement of the framework.

Given the inherent uncertainty in edge direction, especially in the
absence of domain priors, we apply a model averaging strategy to
mitigate algorithmic bias. By generating multiple candidate structures
and identifying recurring patterns across them, we construct a consen-
sus graph highlighting stable causal relationships. This ensemble-based
approach provides a more reliable and interpretable foundation for
downstream PTree construction.

Model averaging. To integrate the outputs from multiple structure
learning algorithms, we construct an averaged network G,,, using
Bayesys. This consensus graph captures only the most consistently
inferred relationships, reducing the influence of algorithm-specific vari-
ance and improving structural reliability. Edges are included in Gy
based on their frequency of occurrence across the candidate graphs,
subject to the following criteria:

a. Directed Edges: Add directed edges e = (u,0) to G,y starting
with the edges that occur most frequently across input graphs,
ensuring no cycles are formed:

e € Gy, if freq(e) > threshold and no cycle

avg

If adding an edge e would create a cycle, reverse the edge:
e — ¢! if e forms a cycle

b. Undirected Edges: Add undirected edges ¢ = {u,v} to Gavgs
skipping those already added as directed edges:

e € Gy, if freq(e) > threshold

avg

c. Cycle Handling:Add directed edges from the cycle-inducing edge
set C:

€ € Guyg if e € C and occurs frequently

The model-averaging procedure draws on ensemble methods in
causal discovery, using a majority-vote rule to decide edge in-
clusion and orientation while keeping the graph acyclic. Instead
of relying on a single algorithm, it highlights dependencies that
recur across several candidate graphs, producing a representative
structure. The resulting consensus DAG therefore reflects recur-
ring patterns across multiple, and often incompatible, models,
and aligns with strategies used in other relevant studies [41-
43]. Although no single procedure can guarantee recovery of
the full causal data-generating process, the consensus graph pre-
serves the strongest and most consistently inferred dependen-
cies, thereby retaining meaningful causal content. This approach
reduces algorithm-specific variability, improves robustness, and
provides a stable foundation for downstream PTree construction.
Building on this foundation, the PCF framework extends the
practical utility of CBNs in two key ways. First, it stabilises
structural learning through model averaging, as outlined above,
ensuring that only reliably inferred dependencies inform down-
stream inference. Second, it overlays this consensus structure with
a Probability Tree, enabling modular and interpretable simula-
tions of interventional and counterfactual scenarios. While PCF
does not resolve challenges such as unmeasured confounding, an
inherent limitation of observational causal inference, it offers a
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systematic mechanism for incorporating domain expertise post
hoc. This allows for refinement of the causal structure through
informed reordering or exclusion of variables. In this respect, PCF
does not aim to expand formal identifiability, but rather to en-
hance the framework’s practical applicability through improved
robustness, interpretability, and clinician-guided adaptability.

Topological sorting.. Once the consensus graph G, is constructed,
we derive a topological ordering r such that:

= topological_sort(Gavg) 3)

This results in a partial order over the variable nodes, reflecting the
causal dependencies encoded in the DAG: each variable appears after
its parents in the ordering. Among different available approaches [44,
45], we employ Kahn’s algorithm for its efficiency and suitability for
moderately sized DAGs.

By deriving the ordering from data rather than relying solely on
expert-defined hierarchies, this step reduces subjectivity and preserves
subtle yet meaningful dependencies captured during structure learn-
ing. Although clinicians may refine the ordering locally to enhance
interpretability, PCF adheres to the partial ordering constraints inferred
from the causal structure, ensuring that any such modifications remain
consistent with the DAG. The variable order z serves as the backbone
for PTree construction, guiding branching decisions and contributing
to both predictive accuracy and interpretability of the final ensemble
model.

Sensitivity analysis. Sensitivity analysis is performed to assess the
responsiveness of nodes to changes in their parent and ancestor nodes
[46]. For a node X; with parent X s sensitivity .S is defined as:

g 9P

0y @

where QX/ represents the parameters in the Conditional Probability
Table (CPT) of X - High sensitivity indicates that small changes in
Ox, result in significant changes in the posterior distribution of X;,
suggesting a strong dependency. Conversely, low sensitivity implies
that large changes in Ox, have minimal impact on X;’s distribution,
indicating a weak dependency.

The posterior probability T of the selected state of the target node,
given the parameter p, is represented by the following general linear
rational functional form:
roapth 5)

c-p+d

The sensitivity analysis algorithm calculates the coefficients a, b, c,
and d. The derivative, which is the basic measure of sensitivity, is given
by:

_a-d-b-c
C(erpta)?

The denominator is positive, indicating that the sign of the deriva-
tive is constant for all values of p. By substituting 0 and 1 for p (noting
that p is a probability), we can calculate the range within which the
posterior will change if p is modified across its entire range, defined
by:

(6)

b
== 7
=g @)
a+b
= 8
P2 c+d ®

Sensitivity analysis is crucial in understanding the stability and
robustness of the model. It helps identify the most influential parame-
ters in the network, guiding targeted interventions and enhancing the
interpretability of the model. We use the GeNIe BN software [47] to
perform this analysis.
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3.2. Probability tree construction

Building on the causal structure defined by the model-averaged
graph G, we construct PTrees through a three-step process de-
signed to support interpretable and data-efficient prediction. PTrees
translate the causal relationships identified by CBNs into explicit, rule-
based paths that enable instance-level reasoning. While CBNs excel at
probabilistic inference, their global structure can obscure the logic be-
hind individual predictions. PTrees, by contrast, provide a transparent
framework that clinicians can interpret. Formally, each node » in a
PTree is defined as a tuple n = (u, S, C), where u is a unique identifier, .S
is a list of variable assignments, and C is an ordered set of transitions
{(p,,»m)}, with p,, € [0, 1] denoting the transition probability to child
node m. These probabilities satisfy Y p,, = 1. The root node has no
parent; leaves have empty transition sets. A complete path from root to
leaf constitutes a full realisation, whose joint probability is computed
as the product of transitions along that path:

k
P(realisation) = H Di- 9
i=1
At each node, the variables in S are assigned concrete values, condi-
tioning all subsequent transitions. To avoid exponential tree growth, we
employ (1) the CBN-derived topological ordering = to guide variable
splits, (2) pruning based on transition probabilities to remove low-
support branches, and (3) ensemble learning on bootstrapped samples
to maintain tractability while improving generalisability. This combi-
nation balances interpretability, robustness, and scalability, key issues
for real-world clinical decision support.

The process for building PTrees comprises three main steps: creating
the tree from the input data, ensemble learning step and the prediction
process.

Create tree from data. The process commences with Algorithm 1
(CREATE_TREE_FROM_DATA), Which outlines the construction of a PTree from
a given dataset and the variable order derived from the previously
learned CBN. The ordering = ensures that nodes are expanded in a
sequence consistent with the conditional dependencies encoded in the
DAG G.

a. Root Level: A PTree T is initialised from dataset D using the
variable order pi. At the root, data are partitioned according to
the target variable Y, and empirical marginal probabilities are
computed as:

Count(v)

_ 10
Total Samples (10)

p(v)

where p(v) denotes the marginal probability for value v of Y.
This initial partitioning establishes a probabilistic baseline for
subsequent splits.

b. Transition Probabilities: For each subsequent node, conditional
probabilities are calculated using the parent—child relationships
defined in the CBN:

Count(X;, Pa(X;))

Count(Pa(X;))
where Pa(X;) are the parent variables of X; in G. This dif-
fers from conventional PTrees, where splits depend solely on
local frequency counts. By constraining probability estimation to
parent—child relationships encoded in the DAG, the PTree explic-
itly incorporates causal dependencies inferred from the CBN. This
ensures that branches reflect not just statistical associations but
dependencies consistent with the learned causal structure.

c. Pruning: To prevent overfitting, branches with probabilities be-
low a pruning threshold ¢ are removed. Rather than fixing 6
globally, we optimise it for each dataset using pruning-curve
analysis. This involves evaluating predictive performance across a
range of 6 values and selecting the point that balances model com-
plexity with generalisation. In this way, pruning retains branches
that provide meaningful conditioning for subsequent variables,
while discarding those that contribute little beyond noise.

P(X; | Pa(X))) = an
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Ensemble learning. A key innovation of PCF is the use of ensemble
learning to enhance robustness and generalisability. A single PTree may
overfit to local data patterns or reflect sampling variability, particularly
in high-dimensional healthcare datasets. By combining multiple PTrees
trained on different data partitions, the ensemble reduces variance
while preserving the interpretability of individual trees.

The ensemble process is implemented through the EnsEmBLE_PROBABI
ury_TREES function, which follows a three-step strategy:

a. Data Splitting: The dataset D is partitioned into k disjoint sub-
sets {D,, D,,...,D,}, through stratified folds to maintain class
balance. This splitting procedure is repeated over multiple runs
with different random seeds, ensuring each tree in the ensemble
is trained on slightly varied distributions. This replication intro-
duces diversity among trees and helps mitigate overfitting, while
still maintaining representative class proportions in each fold.

b. Tree Construction: For each subset D;, a PTree T; is constructed
using Algorithm 1 and the CBN-derived variable order z:

T; = CREATE_TREE_FROM_DATA(D;, 7).

Because each tree shares the same causal ordering but is trained
on different subsets, the ensemble captures cohort-specific varia-
tions while maintaining structural consistency across models.

c. Model Aggregation: The root nodes of the ensemble are stored
in a list ptrees for inference. Predictions from individual trees
are later aggregated, allowing the ensemble to smooth out id-
iosyncratic errors from individual PTrees and yield more stable
outputs.

Prediction process. Predictions are generated by aggregating outputs
from all PTrees in the ensemble, a strategy that reduces variance while
retaining interpretability.

a. Individual Predictions: For each PTree T}, a prediction y; is
obtained by traversing the tree according to the attribute values
of the input instance:

$; = Predict(7}, instance). a2

Each tree reflects both the causal ordering derived from the CBN
and the statistical patterns in its training subset D;. Algorithm 2 is
used to compute the conditional probability of a class given the
observed feature conditions, ensuring that local predictions are
consistent with the inferred causal dependencies.

b. Aggregation: Predictions are combined across the k ensemble
members to obtain a consensus estimate:

k

. 1 .

yavg = E Zyi- (13)
i=1

This averaging smooths out biases introduced by individual
PTrees and provides a more calibrated probability estimate, par-
ticularly important in heterogeneous healthcare data where
single-model predictions may be unstable.

c. Threshold Classification: A final class label is assigned by com-
paring J,,, against a threshold z:

Positive
Class = ) ]
Negative otherwise.

if Pavg > 7,

The threshold r is not fixed a priori but can be tuned through
cross-validation to maximise application-specific performance
metrics, or adjusted post hoc to prioritise sensitivity over speci-
ficity in high-risk clinical screening tasks.

This ensemble-based inference procedure balances bias and vari-
ance across partitions, produces calibrated probability estimates, and
offers an interpretable mechanism for both prediction and uncertainty
quantification.
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SHapley additive explanations (SHAP). To enhance model inter-
pretability and elucidate feature importance, SHAP [48] was integrated
into the framework. SHAP values provide a unified measure of feature
importance, enabling us to understand the contribution of each fea-
ture to the model’s predictions. This enhances the transparency and
trustworthiness of our model’s outputs. Rooted in cooperative game
theory, SHAP values offer a method to attribute the difference between
the prediction for a specific instance and the average prediction to
individual features. SHAP values adhere to local accuracy, missing-
ness, and consistency, ensuring reliable and interpretable explanations.
Mathematically, for a model f and an instance x, the SHAP value ¢;
for feature i is calculated as:

SN =S| - D!
4 = BRI =2 s vt - s
SCN\(i}) )

where:

» N is the set of all features.

+ S is a subset of N that excludes feature i.

» f(S) is the prediction for the instance with only the features in
S.

This formula calculates the average marginal contribution of feature
i across all possible feature subsets, ensuring fair and comprehensive
feature importance attribution.

To facilitate SHAP analysis, predictions from the ensemble of PTrees
were encapsulated in a wrapper compatible with the SHAP framework.
A background dataset was generated using k-means clustering on the
training data to provide a reference point for SHAP value calculations.
SHAP values were computed for a subset of the test data using the
Kernel Explainer to balance computational efficiency and accuracy

4. Case studies

The proposed framework addresses several limitations of traditional
prediction models by offering a multifaceted approach for clinicians. It
facilitates the identification of causal relationships between variables,
enables predictive modelling, and supports the exploration of potential
interventions and counterfactual scenarios. This combination provides
clinicians with a more comprehensive understanding of the data while
acknowledging the inherent challenges of causal analysis.

We evaluated the framework using multiple real-world healthcare
datasets to assess its applicability and generalisability across diverse
clinical contexts. The first dataset was MIMIC-IV, a collection of elec-
tronic health records from critical care settings, where the objective
was to predict the length of stay in the Intensive Care Unit (ICU).
The second dataset was the Framingham Heart Study, which focuses
on cardiovascular disease (CVD) and its risk factors, trends over time,
and familial patterns. Finally, the Diabetes dataset from BRFSS-2015
was used to analyse risk factors and predict the likelihood of diabetes
onset. These case studies were intentionally selected to span distinct
domains, acute care, chronic cardiovascular conditions, and metabolic
disease, demonstrating the framework’s robustness and generalisability
beyond a single clinical setting. This diversity enables an assessment of
PCF’s adaptability to varied healthcare challenges and strengthens its
relevance for broader medical applications.

To ensure valid causal inference, the PCF framework operates under
three foundational assumptions. First, it assumes causal sufficiency,
that is, relevant confounders affecting both treatment and outcome
are either directly observed or adequately captured within the CBN.
Second, the framework relies on the faithfulness assumption, which
posits that observed statistical dependencies in the data reflect the
underlying causal structure. Third, it assumes that the CBN itself is a
valid representation of the data-generating process, whether specified
by experts or learned from data. These assumptions are necessary for
the PCF model to support interpretable interventional and counterfac-
tual analyses that aim to capture plausible causal mechanisms rather
than spurious associations.



S. Zahoor et al.

Algorithm 1 Create Tree from Data

Require: father_node: Node, data: DataFrame, variable_order: List,
level: Integer, pruning_threshold: Float
Ensure: Root node of the decision tree (father_node)
1: function CREATE_TREE_FROM_DATA(father_node, data, variable_order,
level, pruning_threshold)

2: current_variable < variable_order[0]
3: current_data < datalcurrent_variable]
4: class_nodes < empty list
5: for val in unique values of current_data do
6: Create class node with ID, level, statements, and no children
7: Append class node to class_nodes
8: end for
9: total_samples < total number of samples in current_data
10: for each class_node and val in class_nodes do
11: is_root « Check if father_node is root
12: val_count < Count of val in current_data
13: if is_root then
14: Calculate transition probability based on occurrences
15: if transition_prob > pruning_threshold then
16: Insert transition probability into father_node
17: end if
18: else
19: Calculate transition probability based on parent’s state
20: if transition_prob > pruning_threshold then
21: Insert transition probability into father_node
22: end if
23: end if
24: end for
25: for each class_node and val in class_nodes do
26: Get next data for val
27: Get next variable order
28: if next variable order is not empty then
29: Recursively call create_tree_from_data
30: end if
31 end for
32: return father_node

33: end function

Algorithm 2 Conditional Probability Calculation

1: function conprrioNaLPrOBABILITY(se! f,input condition)
2: if input condition is empty then

3 return 0.0

4 end if

5: cut disease « self.prop(’target_variable’)
6: combined_cut < None

7 for all (var,val) in input condition do

8

9

cut < self.prop(var +’ ="+ val)

: if combined_cut is None then
10: combined_cut < cut
11: else
12: combined_cut < combined_cut A cut
13: end if
14: end for
15: disease_see «— self.see(combined_cut)
16: probability « disease_see.prob(cut disease)

17: return probability
18: end function

4.1. Length of stay in ICU case study

The intensive care unit (ICU) stands as a vital line of defence for crit-
ically ill patients, offering specialised care to prevent deterioration from
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severe illness or injury [49,50]. However, the ever-increasing demand
for ICU beds threatens this critical service. The imbalance between
ICU capacity and patient needs has significant consequences for patient
outcomes, public health, and even socio-economic factors [51,52].
Therefore, optimising ICU resource allocation and planning for future
needs necessitates interpretable models that facilitate counterfactual
analysis for informed decision-making, ultimately ensuring optimal
care for critically ill patients.

4.1.1. MIMIC-1IV

In this study, we use the MIMIC-IV version 2.2 database [53],
which includes patients admitted to the BETH Israel Deaconess Medical
Center during the period 2008-2019. The data contains multiple di-
mensions, from administrative data to laboratory results and diagnoses.
We employed preprocessing techniques as described in [54] to ensure
consistency and comparability with existing literature. The cohort in-
cluded all patients with at least one ICU visit. However, certain subsets
of patients were excluded: those who died during their ICU stay, those
who returned to the ICU within 48 h of discharge, those with an LOS
greater than 21 days, and those with an LOS of less than one day.

The exclusion of patients who returned to the ICU within 48 h
was motivated by the focus of this analysis on understanding factors
influencing the initial ICU stay and its length. Rapid readmissions often
reflect distinct cases with underlying complexities such as incomplete
recovery or premature discharge, which could introduce confounding
factors. Similarly, patients with extremely long LOS (greater than 21
days) were excluded to avoid the influence of outliers, which could
disproportionately impact model performance. Patients with an LOS of
less than one day were excluded because the data collected during the
first 24 h was used for modelling, making such cases incomplete for
analysis. These exclusions ensure that the cohort is representative of
the broader ICU patient population, allowing for more generalisable
findings. Future work could investigate the effects of these exclusions
on model performance by reintroducing these subsets for a comparative
analysis.

To transform the length-of-stay task into a classification problem,
we categorised LOS into clinically meaningful groups: short stays (1-4
days) and long stays (greater than 4 days). This categorisation was
guided by the 75th percentile of LOS distribution (Q3 = 4.0) in the
dataset, as described in [54], and reflects thresholds commonly used in
critical care practice.

4.2. Heart disease case study

Despite significant advancements in healthcare, CHD remains a
leading cause of global mortality, accounting for 17.9 million deaths in
2019 as reported by the World Health Organization (WHO) [55]. While
accurate prediction of future risk is undeniably crucial, medical experts
increasingly recognise the limitations of solely relying on such prog-
nostic models. To optimise patient care, a deeper understanding of the
factors influencing individual susceptibility to CHD is paramount. This
necessitates the development of intelligent systems that can not only
predict future risk but also explore the potential impact of interventions
and counterfactual analysis.

4.2.1. Framingham data

In this study, we use the Framingham heart disease dataset includes
over 4238 records and 15 attributes [56]. The goal of the dataset is
to predict whether the patient has 10-year risk of future CHD. The
initial preprocessing steps involved converting the numerical variables
in the dataset into categorical variables. Given that the variables pertain
to health-related data, specific ranges were meticulously considered
during this conversion process. Numerical data representing health
metrics such as blood pressure, cholesterol levels, or body mass index
were categorised into clinically relevant ranges indicative of different
health conditions or risk levels. By transforming numerical data into
categorical form based on meaningful health-related ranges, the dataset
became better suited for subsequent analysis and interpretation within
the context of healthcare applications.
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4.3. Diabetes case study

Despite the existence of preventative measures, diabetes remains a
significant global health burden [57]. Characterised spectrum of devas-
tating complications, it necessitates a multifaceted approach that tran-
scends traditional risk prediction. While accurate future risk prediction
remains valuable for preventative strategies, a deeper understanding of
modifiable factors influencing individual susceptibility is paramount,
especially considering the potential for early intervention to reduce
diabetes-related mortality [58]. This necessitates the development of
robust computational models capable of not only predicting future
risk but also exploring the potential impact of various interventions
through counterfactual analysis. Such models could empower clinicians
by enabling the exploration of “what-if” scenarios: investigating how a
patient’s risk profile might change with different lifestyle modifications
or therapeutic interventions, ultimately leading to tailored preventative
strategies and optimised patient care.

4.3.1. Diabetes data

Data was obtained from the Behavioural Risk Factor Surveillance
System (BRFSS), which is the primary system of health-related tele-
phone surveys that collect state data on risk behaviours, chronic
health conditions, and use of preventative treatments amongst U.S.
residents [59]. The survey started in 1984 and currently performs
over 400,000 adult interviews each year, making it the world’s largest
continuously conducted health survey system. This survey data pro-
vides a dataset that could be used to analyse and forecast diabetes risk
variables. We utilised the BRFSS-2015 dataset, which included 253,680
health assessments.

5. Evaluation and discussion of the results

The evaluation process begins in Section 5.1 with an analysis of the
varying outcomes derived from the sensitivity analysis. In Section 5.2,
we assess the predictive performance of the PCF model, comparing
it against a range of benchmark models, including both interpretable
and non-interpretable methods, across all three datasets. Additionally,
this section explores model interpretability using SHAP. Section 5.3
then examines the effects of potential interventions through interven-
tional analysis. Lastly, Section 5.4 investigates counterfactual analysis
to provide further insights.

5.1. Interpretation of sensitivity analysis

Sensitivity analysis is a crucial step in our framework to under-
stand the influence of various parameters on the target variable. The
diverse outcomes from our sensitivity analysis provide valuable insights
into the multifaceted factors influencing LOS, CHD, and Diabetes, as
depicted in Fig. 2. The colour of the bars indicates the direction of
change in the target state, with red representing a negative impact
and green representing a positive impact. For LOS, factors such as
first care unit admission, patient’s verbal communication ability, and
specific diagnoses (e.g., Respiratory system, Circulatory system) show
high sensitivity, indicating their collective substantial impact on LOS.
In the context of CHD, the absence of diabetes and hypertension was
found to significantly reduce the risk. Additionally, other significant
factors include being a non-smoker with normal systolic blood pressure
and specific education levels. These findings highlight the combined
effect of lifestyle and socio-economic factors on CHD risk. For Diabetes,
the sensitivity analysis demonstrates the complex interplay between
hypertension, cholesterol levels, BMI, and other health indicators. The
figure reveals that individuals with hypertension have the highest
sensitivity value, indicating that high blood pressure significantly in-
creases the risk of developing diabetes. Additionally, other influential
factors include high cholesterol, elevated BMI, and the presence of
heart disease. These findings underscore the complex interplay of mul-
tiple health conditions in determining diabetes risk, highlighting the
necessity of addressing various health parameters simultaneously to
effectively manage and prevent diabetes.
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Table 1

Results using SMOTE for MIMIC-IV.
Algorithm Accuracy Specificity Sensitivity AUC-ROC
Ensemble Algorithms
GB 73.71 77.96 57.91 67.94
XGB 73.92 79.14 54.54 66.84
Adaboost 75.07 79.78 57.57 68.67
RF 75.64 83.22 47.47 65.35
PCF 73.21 77.69 56.56 67.13
Other Algorithms
SVM 73.07 76.42 60.60 68.51
KNN 71.14 77.87 46.12 62.00
Interpretable Algorithms
DT 79.42 88.84 44.44 66.64
LR 70.14 73.70 56.90 65.30
PTree 80.29 91.11 40.06 65.59

5.2. Prediction

This section evaluates the predictive capabilities of PCF by apply-
ing it to three clinical datasets. We conduct a comprehensive assess-
ment of its performance by juxtaposing its outcomes against those
attained by established benchmark methodologies, comprising Logis-
tic Regression (LR) [60], Decision Tree (DT) [61], Random Forest
(RF) [62], Support Vector Machine (SVM) [63], K-Nearest Neighbours
(KNN) [64,65], Gradient Boosting (GB) [66,67], eXtreme Gradient
Boosting (XGB) [68], and Adaptive Boosting (Adaboost) [69]. Note-
worthy among these benchmarks are LR, DT, and KNN, esteemed for
their interpretability, which facilitates the elucidation of their decision-
making mechanisms. Additionally, given the ensemble nature of our
approach involving PTrees, a comparison with ensemble techniques
such as GB, XGB, Adaboost and RF is warranted.

The dataset undergoes stratification-based partitioning into training
and testing subsets to ensure their representativeness. Subsequently, the
performance of each model is assessed utilising diverse metrics such as
accuracy, specificity, sensitivity, and the Area Under the Receiver Oper-
ating Characteristic Curve (AUC-ROC). Predictions are made based on
a default threshold, with the potential for adjustment in scenarios char-
acterised by resource constraints, thereby prioritising cases of utmost
urgency.

The performance metrics for each dataset are presented in Tables
1, 2 and 3. It is well-documented that class imbalance within datasets
can significantly impact the evaluation of machine learning algorithms.
To mitigate this potential bias and ensure a fair comparison across
all models, various techniques for handling class imbalance were em-
ployed. In the case of the MIMIC-IV and Framingham heart datasets, the
SMOTE (Synthetic Minority Over-Sampling Technique) [70] oversam-
pling technique yielded superior results. Conversely, ADASYN (Adap-
tive Synthetic Minority Oversampling Technique) [71] demonstrated
the best performance when applied to the diabetes dataset. This finding
suggests that the most effective class imbalance handling technique
may vary depending on the specific characteristics of the data and the
machine learning models being evaluated.

Tables 1, 2, and 3 present the performance evaluation of the PCF
framework compared to benchmark methodologies across the three
datasets. Notably, PCF achieves results that are largely comparable to
established ensemble-based and interpretable models, balancing speci-
ficity and sensitivity while maintaining competitive predictive accu-
racy.

On the MIMIC-IV dataset, PCF achieves an accuracy of 73.21%
and an AUC-ROC of 67.13%, performing similarly to ensemble-based
methods such as Gradient Boosting (73.71% accuracy) and Adaboost
(75.07% accuracy). Although DT achieves a higher accuracy of 79.42%,
PCF demonstrates better sensitivity (56.56%) than simpler models like
KNN, which achieves only 46.12%. Among ensemble methods, PCF
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Sensitiity for los=Short
Current value: 0.783663 Reachable range: [0.774894
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Sensitivity for TenYearCHD=No
Current value: 0.84571 Reachable range: [0.828336 . 0.852902]

0.835 084 0845 _

1: glc_verbal=LevelS

2 los=Short | first_careunt=MICU, glc_verbhi=Leveis, Diagnosis_2=Respiratorysystem
3: glc_verbal-Levelt
4:los=Short| first_careunt=MICU. glc_verlal=Levels. Diagnosis_2=Circulatorysystem
5:los=Short | first_careunit=MICU, glc_verbdl=Levels, Diagnosis_2=Gentourinarysystem
6: los=Short| first_careunt=MICU, gic_verbaHLevels. Diagnosis_2-Abnormaicinicalfindings
7:los=Short | first_careunt=MICU, glc_ve{bal-Leveis. Diagnosis_2=Nervoussystem
& los=Short| first_careuntt=CVICU, gic_verbal=LevelS. Diagnosis_2=Circulatorysystem

9: los=Short| first_careuni=MICU. glc_verbal-LevelS. Diagnosis_2-Digestivesystem

10:los=Short first_careunit=CCU. glc_verbal=LevelS, Diagnosis_2=Circulatorysystem

1: disbetes=No| prevalentiiyp=o
2 prevalentiypdiio | BPMeds=No
3: TenYearCHD=No | currentSmoker=No. diabetes=Nd. sysBP=Pretiigh. education=HighSchool
4 TenYearCHD=No | currentSmoker=es, disbetes=Nd, sysBP=Pretiigh. education=HighSchool
5: TenYearCHD=No | currentSmoker=Yes. diabetes=No. sysBP=Normal, education=HighSchool
6: TenYearCHD=No| currentSmoker=No, diabetes=No. sysP=Normal, education=HighSchool
7: TenYearCHD=No | currentSmoker=No. diabetest-No. sysBP=High, education=HighSchool

& TenYearCHD=No | currentSmoker=Yes. diabdtes=No. sysBP=PreHigh, education=GED|

9: TenYearCHD=No | currentSmoker=Yes. diablstes=No. sysBP=Normal, education=GED)|

10: TenYearCHD=No | currentSmoker=No. diabdtes=No. sysBP=PreHigh. education=GED|

Sensitiity for Diabetes_binary=No
Current value: 0.860467 Reachable range: [0.850717 .. 0.868277)

0.855

085 _

2 Diabetes_binary=No | HighBP=Ho. HighChol=No. Bli=Elevated. HeartDiseageorAttack=No. GenHth=Excellent, DiffWalk=N.
3: Diabetes_binary=No | HighBP=No. HighChol=No. Bli=Normal, HeartDiseasebrAttack=No, GenHith=Excellent, DiffWalk=N.
4: Diabetes_binary=No | HighBP=Yes, HighChol= Y es. BElevatd, HeartDiseaseorAttack=No, GenHith=Excellent, DiffWalkeN.
S: Diabetes_binary=No | HighBP=No, HighChol=es. Bli-Elevated. HearlDiseaseorAtack=No, GenHith=Excellent, DiffWalk=N
6: Diabetes_binary=No | HighBP=Yes, HighChol=No. Bli-Elevated. HeartDiseaseorAttack=No, GenHith=Excellent, DiffWalk=N.
7: Diabetes_binary=No | HighBP=No, HighChol=No. Bli=Elevated. HeartDiseaseorAttack=No, GenHith=Good, DiffWalk=N.

8: Diabetes_binary=No | HighBP=Yes, HighChol=Yes. Blll-Ele{ated. HeartDiseaseorAttack=No, GenHith=Good, DiffWalk=N
9 Diabetes_binary=No | HighBP=No, HighChol=No. BI=Elevated, Hear

10: GenHith=Excellent | HighBP=]res. BMi-Elevated, DiffWak=No

Fig. 2.

Table 2

Results using SMOTE for Framingham heart data.
Algorithm Accuracy Specificity Sensitivity AUC-ROC
Ensemble Algorithms
GB 63.08 64.81 53.48 59.15
XGB 63.91 68.01 41.08 54.54
Adaboost 66.03 69.26 48.06 58.66
RF 67.09 72.73 35.65 54.19
PCF 66.98 69.68 51.93 60.80
Other Algorithms
SVM 69.22 74.26 41.08 57.67
KNN 76.76 87.62 16.27 51.95
Interpretable Algorithms
DT 64.03 66.06 52.71 59.38
LR 61.55 63.14 52.71 57.92
PTree 65.57 70.23 39.53 54.88

Table 3

Results using ADASYN for diabetes data.
Algorithm Accuracy Specificity Sensitivity AUC-ROC
Ensemble Algorithms
GB 70.78 70.02 75.66 72.84
XGB 69.71 71.34 59.25 65.30
Adaboost 71.35 71.09 73.01 72.05
RF 73.42 77.45 47.61 62.53
PCF 73.64 73.41 75.13 74.27
Other Algorithms
SVM 69.71 68.62 76.71 72.67
KNN 79.00 85.86 35.26 60.56
Interpretable Algorithms
DT 62.92 60.19 80.42 70.31
LR 70.71 70.27 73.54 71.90
PTree 72.36 71.12 52.82 61.97

effectively balances specificity and sensitivity, avoiding extremes like
RF, which prioritises specificity at the expense of sensitivity.

On the Framingham dataset, PCF achieves an AUC-ROC of 60.80%,
outperforming most ensemble methods while maintaining competi-
tive accuracy at 66.98%, compared to RF (67.09%) and Adaboost

10

1: HighdP=Yes

DiseaseorAttack=No, GenHith=Excellent, DiffWalk=N

Sensitivity Analysis for LOS, Diabetes, and Framingham datasets.

(66.03%). Although KNN achieves the highest accuracy at 76.76%,
its significantly lower sensitivity (16.27%) highlights its limitations
in handling balanced classification scenarios. PCF’s balanced trade-off
between specificity and sensitivity makes it particularly well-suited for
datasets requiring nuanced predictions.

On the diabetes dataset, PCF achieves the highest AUC-ROC among
all models (74.27%) and an accuracy of 73.64%, comparable to ensem-
ble methods such as RF (73.42%) and higher than DT (62.92%). While
KNN achieves the highest accuracy (79.00%), its specificity (85.86%)
comes at the cost of sensitivity (35.26%). PCF balances both met-
rics effectively, achieving 73.41% specificity and 75.13% sensitivity,
demonstrating its robustness across diverse datasets.

To confirm that PCF’s observed performance was not the result of
random variation, we conducted a non-parametric permutation test
with 1000 iterations. In all datasets, the test yielded p < 0.001, indi-
cating that PCF’s accuracy is statistically significant and highly unlikely
to have occurred under random label assignments. This strengthens the
validity of the reported results and supports the reliability of PCF as a
predictive model.

Overall, while PCF does not consistently outperform simpler models
such as DT or KNN in terms of accuracy, it offers balanced perfor-
mance across key metrics and demonstrates robustness across datasets.
Its ability to maintain competitive predictive performance while also
uncovering causal relationships and supporting intervention modelling
sets it apart from purely predictive methodologies.

5.2.1. Interpretability with SHAP

The SHAP plot, shown in Fig. 3, interprets the influence of each
feature on predictions for LOS, Coronary Heart Disease (CHD), and
Diabetes. For LOS, features such as creatinine, first care unit, and
urea nitrogen have high SHAP values, indicating their strong influ-
ence on prolonged ICU stays. The Glasgow Coma Scale (glc_verbal)
score and elevated white blood cells, along with specific diagnoses
(e.g., respiratory and circulatory system issues), also significantly im-
pact LOS predictions. In CHD predictions, critical features include
current smoking status, systolic blood pressure (sysBP), and glucose
levels, which are known risk factors for heart disease. High cholesterol
(totChol), the presence of diabetes, socio-economic factors, and lifestyle
choices such as education level and physical activity further influence
CHD risk. For Diabetes, key contributors include high blood pressure
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Fig. 3. SHAP plot showing feature impacts on predictions for LOS, CHD, and Diabetes.

(HighBP), elevated BMI, and high cholesterol levels, which are essential
components of metabolic syndrome. General health status (GenHlth)
and difficulty walking (DiffWalk) also play significant roles, along
with the presence of heart disease and levels of physical activity. The
SHAP plots reveal that LOS is heavily influenced by clinical indica-
tors related to critical health conditions and specific ICU units. CHD
risk is predominantly affected by cardiovascular risk factors, lifestyle
choices, and socio-economic factors, while Diabetes risk is determined
by metabolic health markers, overall health, and physical activity.
These insights validate the results from sensitivity analysis and provide
a detailed understanding of feature contributions, helping identify key
areas for intervention and improve clinical decision-making processes
by emphasising the most impactful factors for each health condition.
By combining sensitivity analysis for understanding variable influence
within the CBN and SHAP values for detailed prediction explanations,
our framework ensures robust causal inference and clear, actionable
insights for clinical decision-making.

5.3. Intervention

In the context of PCF, intervention involves the strategic modifica-
tion of transition probabilities to ensure a specific event occurs with
certainty (probability of 1). This approach allows for the exploration
of conditional probabilities represented as P(A | do(B)), indicating
the probability of event A occurring given that event B is enforced.
Conceptually, an intervention reflects an externally imposed change,
such as adjusting a patient’s physiological or treatment variable, and
estimates the resulting shift in outcome probabilities. For instance,
P(recovery | do(early discharge)) represents the likelihood of recovery
if early discharge were implemented, irrespective of factors that would
normally influence discharge timing.

Unlike in CBNs, interventions in PCF are more general and do not
require unique value assignments to manipulated random variables.
Instead, the impact of an intervention depends on a critical set, defined
as the minimal subset of nodes or branches in the probability tree
whose transition probabilities must be modified to make the target
event occur with certainty. In practical terms, the critical set identifies
precisely where in the tree the intervention must act to achieve the
desired causal outcome, while leaving unaffected branches unchanged.

Formally, let 7 denote a probability tree over variables V, and let
E C V be the event to be enforced. The critical set C C T is defined
as the minimal collection of decision contexts at which modifying
transition probabilities is sufficient to ensure P(E) = 1 under the
intervened tree. The intervention proceeds as follows: (i) traverse the
tree to locate all branches where E is not satisfied; (ii) identify the
minimal set C of nodes where changes can block these violating paths;
(iii) set the transition probabilities leading to incompatible paths to
zero; and (iv) renormalise the remaining transitions locally to preserve
probabilistic consistency.
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All simulated interventions are restricted to clinically meaningful
and actionable modifications. Only modifiable variables, such as heart
rate, respiration rate, or laboratory measures, are considered. This
ensures that the scenarios produced by PCF correspond to interventions
that are both realistic and interpretable within real-world healthcare
contexts.

MIMIC-IV:. To elucidate the impact of key physiological parameters
on ICU length of stay (LOS), an interventional analysis was conducted.
Eight critical factors were examined to assess the PCF model’s ability to
replicate established causal relationships. The primary objective was to
assess PCFs ability to replicate established causal relationships between
these parameters and LOS.Box plots (Fig. 4) were used to visualise the
distribution of los across different intervention groups. In these plots,
red signifies an increased probability of los exceeding 4 days (los = 1),
while green signifies a decrease.

Existing literature establishes a link between bradycardia (heart rate
< 60 beats per minute) and extended ICU stays due to underlying
medical conditions requiring further investigation or treatment [72]. To
explore this relationship within our model, interventional analysis was
conducted on heart rate. Simulating bradycardia (do(heart_rate = 0))
significantly increased the likelihood of extended ICU stays (los = 1),
consistent with established medical knowledge. However, the relation-
ship between heart rate and length of stay is more complex. Similar
trends were observed for heart rates above 60 bpm (do(heart_rate = 1)),
though to a lesser extent, and a slight decrease in /os = 1 was noted for
even higher heart rates (do(heart_rate = 2)). This highlights the need
to consider multiple physiological and clinical variables beyond heart
rate.

In literature, it is established that low levels of urea nitrogen (UN)
are not typically concerning, often associated with low protein in-
take [73]. Similar findings are observed in our model, where ma-
nipulating UN levels to be low (do(Urea_Nitrogen = 0)) results in a
decrease in the proportion of patients with extended ICU stays (los = 1).
However, as the intervention values increase (do(Urea_Nitrogen = 1)
and do(Urea_Nitrogen = 2)), a trend emerges indicating a potential rise
in the probability of los = 1. While this increase is subtle, it is visually
detectable by the red colour in the box plots.

Literature indicates that elevated Red Cell Distribution Width
(RDW) is closely associated with increased risk of cardiovascular mor-
bidity and mortality in patients with previous myocardial infarction,
potentially leading to prolonged hospital stays [74]. Our model’s inter-
ventional analysis, where RDW is manipulated to be high (do(RDW =
2)), shows a corresponding increase in the percentage of patients with
extended ICU stays (los = 1), consistent with existing literature.

Lower levels of creatinine are often related to muscle loss and severe
liver disease. Patients experiencing significant muscle mass loss in the
first week of ICU admission are at higher risk of extended stays [75].
This aligns with our findings, where intervening to set low creatinine
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levels (do(Creatinine = 0)) notably increases the likelihood of extended
ICU stays (los = 1).

High respiration rate, indicative of tachypnea in adults, is charac-
terised by a respiratory rate exceeding 20 breaths per minute and often
requires further assessment, leading to prolonged hospital stays [76]. In
our model, intervening to elevate the respiration rate (do(respiration =
2)) resulted in an increased probability of extended ICU stays (los = 1).

Fever is a common issue in ICU patients and often necessitates diag-
nostic tests and procedures, which significantly prolongs the stay [77].
Consistent with this, our model shows that intervening to indicate mild
fever (do(temperature = 1)) also leads to an elevated probability of
extended ICU stays (los = 1).

Inadequate oxygen saturation (do(saturation = 1)) has a varied effect
on /os = 1, while other saturation levels show no discernible impact.
Manipulating glucose levels reveals an inverse response, suggesting
these variables indirectly influence LOS through intermediary factors
rather than exerting a direct effect.

Framingham heart data:. This section explores the impact of various
health factors on CHD risk through intervention analysis, aiming to
assess the PCF’s ability to replicate established causal relationships
between these parameters and CHD. As illustrated in 5, our findings
underscore significant alterations in P(T'enYearCHD = 1) across dif-
ferent interventions, shedding light on the intricate interplay between
these health factors and CHD risk.

Existing literature highlights both systolic and diastolic hyperten-
sion as independent risk factors for adverse cardiovascular events [78].
Our analysis corroborates this, demonstrating that interventions on
systolic blood pressure, such as do(sysBP = 3), result in an increased
probability of CH D = 1. Similarly, interventions on diastolic blood
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pressure (do(diaBP = 1), do(diaBP = 2) and do(diaBP = 3)) also
heighten the likelihood of CH D = 1, reinforcing the significant impact
of blood pressure levels on cardiovascular health.

Additionally, glucose metabolism plays a critical role in cardio-
vascular health, as deviations from normal glucose levels can lead to
adverse outcomes [79]. Our model confirms this relationship, showing
that interventions altering glucose levels, such as do(glucose = 0) and
do(glucose = 2), significantly increase the probability of CHD = 1.
These findings underscore the critical role that glucose regulation plays
in cardiovascular risk management.

Raised total cholesterol levels are well-documented as a significant
risk factor for coronary heart disease (CHD) [80]. In our model, in-
terventions on total cholesterol (do(totChol = 1) i.e levels > 200)
were found to increase the probability of CHD = 1, reinforcing the
established link between elevated cholesterol and heightened CHD risk.

Literature highlights that asymptomatic bradycardia may influence
heart disease risk due to underlying autonomic or cardiovascular
issues [81]. Our intervention analysis, which simulates bradycardia
through interventions on heart rate (do(heartRate = 0)), reveals a
marked increase in the probability of CHD = 1.

Smoking has been highlighted as a leading risk factor for heart
disease [82]. Our model’s interventions demonstrate that smoking 6-10
cigarettes per day (do(cigsPerDay = 2)) and more than 11 cigarettes
per day (do(cigsPerDay = 3)) significantly increase the probability of
CH D = 1. These findings underscore the substantial impact of smoking
on coronary heart disease risk.

Research indicates that higher education levels can lead to sub-
stantial health benefits [83]. Our model corroborates these findings,
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demonstrating that higher levels of education significantly decrease the
probability of CHD = 1.

The relationship between BMI and CHD is often characterised as
inconsistent and complex [84]. Our findings support this observa-
tion, as BMI interventions did not produce interpretable results. This
ambiguity may be attributed to the intricate interplay of metabolic
factors that extend beyond body mass alone, suggesting that BMI might
not be a straightforward predictor of CHD risk. The lack of a clear
relationship underscores the need for a more nuanced understanding
of how metabolic factors contribute to CHD.

Diabetes:. This section explores the influence of various health factors
on the likelihood of developing diabetes through intervention analysis.
As depicted in Fig. 6, illustrates the significant changes in diabetes risk
(P(Diabetes = 1)) following interventions on the selected variables.

Hypertension and hyperlipidemia are well-established predictors
of diabetes risk, as highlighted in existing literature [85,86]. Our
analysis confirms this relationship, showing that high blood pressure
(do(HighBP 1)) increases diabetes probability, while its absence
(do(HighBP = 0)) decreases the risk. Similarly, elevated cholesterol
levels (do(HighChol = 1)) are linked to a higher likelihood of diabetes,
whereas normal cholesterol levels (do(HighChol = 0)) reduce the risk.

Body Mass Index (BMI) is another significant risk factor for di-
abetes [87]. Our findings indicate that maintaining a normal BMI
(do(BM I = 0)) lowers the probability of diabetes, while a BMI of 40 or
more (do(BM I = 2)) substantially raises this probability. This suggests
that keeping a BMI between 0-24 mitigates diabetes risk, whereas
higher BMI levels considerably elevate it.

Maintaining a healthy lifestyle is crucial for diabetes prevention
[88]. Our analysis demonstrates that individuals with excellent general
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health (do(GenH Ith = 1)) have a lower risk of developing diabetes com-
pared to those in good (do(GenHIth = 2)) or poor health (do(GenHIth =
3)). Additionally, regular physical activity (do(PhysActivity 1)
significantly reduces diabetes risk compared to a sedentary lifestyle
(do(PhysActivity = 0)).

Education also plays a positive role in diabetes management and
complication prevention [89]. Our results indicate that individuals with
limited education (do(education = 1)) face a higher diabetes risk, while
those with some secondary education (do(education = 2)) show mixed
outcomes. Notably, higher education levels (do(education 3)) are
significantly associated with reduced diabetes risk.

The link between diabetes and heart disease is well-documented
[90]. Our analysis supports this connection, as the absence of heart
disease (do(H eartDisease 0)) decreases diabetes risk, whereas its
presence (do(H eartDisease = 1)) significantly increases it. This finding
underscores the interconnected nature of these conditions, highlighting
the need for integrated healthcare strategies.

To establish the empirical relevance of the selected intervention
variables, we performed Chi-Square tests of independence with
Benjamini-Hochberg false discovery rate (FDR) correction across all
three datasets. All variable—outcome pairs exhibited statistically signif-
icant associations after multiple comparison adjustment (g < 0.001).

In the Framingham dataset, traditional cardiovascular risk factors,
including blood pressure, cholesterol, glucose, smoking, and body mass
index (BMI), were strongly associated with CHD risk (y? = 16.9-149.1).
In the MIMIC-IV critical care dataset, physiological markers such as
vital signs and laboratory values showed robust associations with ICU
length of stay (y?> = 62.1-360.3). The Diabetes dataset similarly con-
firmed well-established relationships between metabolic factors, health
behaviours, and diabetes status (y* = 55.5-522.6).
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These results validate the empirical grounding of our intervention
variables across diverse clinical domains, reinforcing the theoretical
and causal relevance of the PCF framework.

5.4. Counterfactuals

Counterfactuals are alternative scenarios or outcomes that could
have occurred if certain events or variables had been different. In
healthcare, they are used to ask questions such as what would have
happened if a different course of action had been taken or if specific
variables had changed. Counterfactual reasoning enables clinicians
to explore the probabilities associated with an “alternate reality,”
distinguishing between the indicative (events that actually occurred)
and the subjunctive (events that could have occurred under different
circumstances).

In this study, we investigate two types of counterfactual scenarios
to assess the impact of clinician insights on our model, as described in
Sections 5.4.1 and 5.4.2.

5.4.1. Reordering variables based on domain knowledge

We investigate the impact of modifying variable order within the
PCF framework to illustrate its potential benefits as a proof of con-
cept, rather than an implementation of clinician-directed decisions.
While the CBN provides a robust foundational structure, our intent
is to demonstrate how the model could be enhanced by integrating
clinician-informed causal relationships. The core principle of our model
is adaptability; it combines empirical foundations provided by the CBN
with potential clinical insights. While the CBN’s causal structure estab-
lishes the initial framework, we explore how clinician adjustments to
the variable order might impact predictive precision. These adjustments

are permitted within this partial ordering, that is, reordering is allowed
only among variables not causally linked in the DAG. This maintains the
integrity of the underlying causal assumptions while enabling clinically
meaningful refinements.

By granting clinicians the ability to adjust variable sequences, we
create an inclusive environment where domain-specific knowledge can
shape and refine the model’s architecture. This approach aims to bal-
ance the structured scaffolding provided by the CBN with the nuanced
insights derived from clinical acumen, ultimately enriching the model’s
interpretability and operational efficacy in real-world healthcare set-
tings. This fosters the exploration of counterfactual scenarios, assessing
the impact of incorporating clinician insights on model performance
and decision-making outcomes.

Soliciting specific feedback on variables, assumptions, and potential
causal relationships enhances the interpretability, relevance, and trust-
worthiness of our model, ensuring alignment with clinical expertise
and practice. Through this refinement, we navigate diverse scenarios
or “what-if” queries related to the model’s operation under distinct
conditions, including modifications of causal trajectories informed by
clinical expertise.

Fig. 7 illustrates how large hospitals, equipped with extensive
datasets, can develop CBNs to represent causal relationships and gen-
erate pre-trained PCF models. These models could then be shared
with smaller hospitals to support knowledge transfer and collaborative
decision-making. Realising this vision of a centralised causal knowledge
repository, however, requires addressing several practical challenges.
Data sharing must comply with strict privacy regulations (e.g., HIPAA,
GDPR), effective exchange depends on standardisation of clinical data
across institutions, and strong governance is needed to ensure that
shared models remain transparent, validated, and regularly updated.
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Table 4 Table 5
Results using SMOTE for MIMIC-IV after changing the order. Results using SMOTE for framingham data after changing the order.
Algorithm Accuracy Specificity Sensitivity AUC-ROC Algorithm Accuracy Specificity Sensitivity AUC-ROC
PTree 80.29 91.11 40.06 65.59 PTree 64.98 69.40 40.31 54.85
PCF 72.43 78.33 50.50 64.41 PCF 66.39 69.12 51.16 60.14
Table 6
While these barriers are substantial, advances in federated learning and Results using ADASYN for diabetes data after changing the order.
privacy-preserving computation provide potential pathways towards Algorithm Accuracy Specificity Sensitivity AUC-ROC
implementation. PTree 73.29 78.93 38.14 58.54
PCF 73.71 75.45 62.88 69.17

MIMIC-IV:. The initial variable order provided by the CBN positioned
“Diagnosis_2” earlier in the sequence, suggesting its early influence
on the outcome variable. However, the counterfactual adjustment hy-
pothesised that strategically reordering the variables might enhance
the model’s capacity to learn causal relationships and predict los more
accurately. This adjustment reflected the potential causal flow where
“Diagnosis_2” is informed by preceding laboratory tests. Therefore, we
reordered the variables to place “Diagnosis_2” later in the sequence,
just before the outcome variable (los).

Table 4 summarises the performance of the PCF and PTree methods
following the variable order change. The table reveals that while the
rearrangement did not alter the accuracy of the PTree model, it resulted
in a slight decrease in PCF performance. This outcome might be at-
tributed to the sensitivity of the PCF model to variable order, as it relies
on an intricate interplay of causality among variables. The reordering
may have disrupted previously established dependencies, highlighting
the complex interactions inherent in the data. Such changes underline
the importance of carefully considering the sequence of variables in
models sensitive to causal relationships.

Framingham heart data:. The original variable order provided by the
CBN included ‘BPMeds’, ‘prevalentHyp’, ‘heartRate’, ‘prevalentStroke’,
‘diabetes’, ‘sysBP’, ‘totChol’, ‘glucose’, ‘diaBP’, ‘BMI’, ‘education’, ‘cur-
rentSmoker’, ‘cigsPerDay’, and ‘TenYearCHD’. Subsequently, a coun-
terfactual adjustment was made, rearranging certain variables to cre-
ate a revised order: ‘BPMeds’, ‘prevalentHyp’, ‘diabetes’, ‘glucose’,
‘heartRate’,  ‘sysBP’,  ‘diaBP’, ‘BMI’, ‘education’, ‘totChol’,
‘prevalentStroke’, ‘currentSmoker’, ‘cigsPerDay’, and ‘TenYearCHD’.
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Table 5 presents the performance evaluation results for the PCF
and PTree methods following the variable order modification. The
analysis indicates almost similar performance for both the PCF and
PTree method (slightly lower than original). This slight decrease can
be attributed to the fact that the original order might have implicitly
captured relevant relationships for CHD prediction better than the
counterfactual order.

Diabetes:. The original order of variables provided by the CBN was
as follows: ‘HighBP’, ‘BMI’, ‘DiffWalk’, ‘GenHlth’, ‘PhysHIth’, ‘High-
Chol’, ‘MentHIth’, ‘Income’, ‘NoDocbcCost’, ‘AnyHealthcare’, ‘Educa-
tion’, ‘Smoker’, ‘PhysActivity’, ‘HeartDiseaseorAttack’, ‘Fruits’, ’Dia-
betes_binary’. The counterfactual order maintained the overall structure
but changed the position of a few variables and the new order became:
‘GenHlth’,'BMI’,‘DiffWalk’,'PhysHIth’, ‘PhysActivity’, ‘HighBP’, ‘High-
Chol’, ‘MentHIth’, ‘Education’, ‘Income’, ‘NoDocbcCost’,
‘AnyHealthcare’, ‘Smoker’, ‘HeartDiseaseorAttack’, ‘Fruits’,
'Diabetes_binary’.

Table 6 summarises the accuracy of PCF and PTree methods, after
the change in variable order. As the table shows, reordering the vari-
ables led to an increase in the model accuracy for PCF as well as for
PTree. However, AUC-ROC seems to have decreased in both. The results
of these reordering experiments highlight the complex interplay be-
tween data-driven structure learning and expert-informed adjustments.
In two of the three datasets, the original variable order derived from
the CBN produced slightly better performance, suggesting that the data-
driven approach may capture subtle dependencies not easily articulated
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through domain expertise alone. However, in the third dataset, the
clinician-informed reordering led to performance gains, illustrating the
potential value of expert insight when aligned with the data. These
findings underscore the flexibility of the PCF framework while also
pointing to the need for careful evaluation when integrating domain
knowledge, especially in models sensitive to causal ordering.

5.4.2. Counterfactual statements for specific datasets

In addition to reordering variables, PCF can generate counterfactual
statements by altering the values of specific variables within a patient’s
observed history. This addresses retrospective “what if” questions,
for example, how ICU length of stay (LOS) might have changed had
a fever not occurred, while keeping the rest of the clinical context
fixed. Unlike forward-looking interventions, which model hypothetical
changes without reference to prior states, counterfactuals are anchored
in the factual record. This allows PCF to provide patient-level insights
that closely mirror real clinical scenarios.

Following Pearl’s framework, PCF implements counterfactual rea-
soning through a “twin network” representation: one copy of the
model encodes the factual scenario, while a parallel copy encodes the
counterfactual. This construction enables direct comparison between
observed outcomes and their hypothetical alternatives, isolating the
marginal contribution of the variable change under consideration.

Formally, PCF computes counterfactual probabilities of the form

PYc | X =x),

where Y. denotes the outcome under the counterfactual assumption
that variable C takes a different value, and X = x represents the factual
context. This notation follows Genewein et al. [6], where Y. represents
the subjunctive outcome under assumption C. It is equivalent to the
more widely adopted notation Y._. used in Pearl’s framework. Simu-
lations are restricted to clinically plausible changes, such as increasing
heart rate from bradycardic to normal or restoring normothermia in
febrile patients.

Building on this formalisation, PCF generates counterfactual prob-
ability trees by (1) conditioning on the observed evidence and (2)
applying a structural intervention using the do() operator, which severs
upstream dependencies and reinitialises downstream variables. Im-
plementation follows the procedure of Genewein et al. [6] via the
function CF(n, m,5), where n and m are the roots of the reference and
factual trees, respectively, and § is the min-cut set for the intervention.
Recursive alignment with

ZIP(A, B) = {(a,. b} |

re-evaluates subpaths, allowing PCF to isolate the marginal effect of a
single variable change.

To ensure tractability and interpretability, PCF employs a princi-
ple of feature sparsity. Counterfactuals are limited to a small set of
clinically relevant variables, avoiding wholesale alterations across the
dataset. Sparsity therefore plays a dual role, it reduces computational
complexity and constrains the analysis to scenarios that are realistic
and actionable. This perspective is consistent with the emerging field
of counterfactual explainability [91], which emphasises the importance
of limiting interventions to those that are both theoretically sound and
practically implementable.

Guided by this principle, we selected features for each dataset
based on their established presence in the literature and their recog-
nised clinical relevance. Incorporating such well-supported variables
enhances the robustness and interpretability of our analyses, while
ensuring that the resulting counterfactuals are meaningful in real-world
decision-making contexts. Fig. 8 provides a visual illustration of this
process.

As an illustration, consider a patient with hypotension and fever,
predicted to have a 72% probability of prolonged ICU stay. A counter-
factual adjustment, setting temperature to a normal range
do(temperature = 0), reduced this estimate to 51%, suggesting that
earlier fever control might have shortened the patient’s stay.
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MIMIC-IV:. This section explores the factors influencing the LOS in
the ICU using counterfactual analysis. Specifically, we examine the
conditional probability of a patient requiring an extended ICU stay
(los = 1, i.e., more than 4 days). By employing counterfactual expla-
nations, we investigate hypothetical scenarios where certain vital signs
or laboratory values are altered. This allows us to assess the impact
of these changes on the probability of an extended ICU stay. Features
were chosen based on their potential to yield valuable insights into the
determinants of prolonged ICU stays.

(a) Heart Rate: We analysed the effect of heart rate by comparing
the baseline probability P(los = 1 | heart_rate = 0) for patients
with low heart rate (0) to the counterfactual scenario where their
heart rate is normal (1). The counterfactual probability P(los* =
1 | heart_rate = 0), 10s* = 10Spuart rarec1’ SUgZeSts a decrease in
the likelihood of extended ICU stay ‘when the heart rate is normal.
Saturation: Similarly, we examined the effect of oxygen satura-
tion by comparing the baseline probability P(los = 1 | saturation =
3) for patients with very low oxygen saturation (3) to the coun-
terfactual scenario with normal oxygen saturation (0). The coun-
terfactual probability P(los* = 1 | saturation = 3), *

)

Rl

los™ =
saraiion—o indicates that there is only a marginal difference
in the probability of an extended ICU stay when the patient’s
saturation level is normal.

Glucose and Urea Nitrogen: We further analysed the role of
glucose and Urea Nitrogen levels. Interestingly, for both high
glucose P(los = 1 | 2) and high Urea Nitrogen
P(los = 1 | UreaNitrogen = 2), the counterfactual scenarios
with normal levels (glucose = 1 and Urea Nitrogen = 1, re-
spectively) showed slightly increased probabilities of extended
ICU stay P(los* = 1 | Glucose = 2), = 10SGucose—1 and
P(los* = 1 | UreaNitrogen = 2), los* = 10Sy,eqNitrogen—1- THUS,
the probability of extended ICU stay may be increased even if the
patient had normal glucose and urea nitrogen levels.
Temperature: Finally, we explored the influence of body tem-
perature. The baseline probability for extended ICU stay with
high fever P(los = 1 | temperature = 2) was compared to
the counterfactual scenario with normal temperature (0). This
resulted in a minor decrease in the probability P(los* = 1 |
temperature = 2), 10s* = 105,y p0rarure—0> Which suggests a slight
decrease in the likelihood of extended ICU stay, if the patient had
normal body temperature.

los

(o)

Glucose =

los™

@

Fig. 9 illustrates the probability of a patient remaining in the ICU
for more than four days (/os = 1) under various counterfactual scenar-
ios involving five different variables: Heart Rate, Saturation, Glucose,
Urea, and Temperature. Each line in the plot represents one of these
variables, with the x-axis displaying the factual and counterfactual
scenarios and the y-axis showing the probability values. This figure
provides insights into how alterations in these variables influence the
likelihood of an extended ICU stay.

Framingham data:. This data offers a wealth of information on car-
diovascular risk factors. To leverage counterfactual explanations ef-
fectively, we strategically select the features with high explanatory
potential for predicting CHD.

(a) BMI: We began our analysis by examining the impact of Body
Mass Index (BMI) on the likelihood of developing CHD. Starting
with a BMI of 2 (High), indicative of CHD, we delved into

1 Here, los* denotes a copy of the outcome variable /os in the counterfactual
world created by the intervention. The expression /0s* = 105,411 rare; fOlloWs
the probability-tree convention of Genewein et al. [6], and corresponds to
Pearl’s standard notation Y,_,, where Y is the outcome (/os) and X is the
intervened variable (heart_rate).
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Original environment

Counterfactual analysis

P(y=1jz=1)

Counterfactual environment

P(y*=1[z=1), y* =y[z<-0]

Fig. 8. Counterfactual analysis using PCF. The left panel represents the observed environment, where the probability of diabetes is conditioned on the presence of
high cholesterol: P(y = 1| z = 1). The right panel depicts a counterfactual world in which we estimate the outcome if the high cholesterol condition were absent,
represented as P(y* = 1|z = 1), where y* = y,_,. Here, z denotes the causal variable HighChol, y is the observed outcome Diabetes, and y* is the counterfactual
outcome under the intervention.
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Fig. 9. Line plots showing the probability of ICU stay exceeding 4 days under factual and counterfactual scenarios for various health variables.

counterfactual scenarios to explore the probability of CHD had
the patient possessed a normal BMI (0). The baseline probability
P(CHD 1| BMI 2), represents the likelihood of CHD
under the existing BMI condition. Interestingly, the counterfactual
probability P(CHD* = 1 | BMI = 2), CHD* = CHDpgp e o»
reveals that even with a normal BMI, the risk of CHD might still
remain relatively high.

Systolic Blood Pressure (sysBP) and Diastolic Blood Pres-
sure (diaBP): We investigated the influence of blood pressure
measurements (systolic pressure, or sysBP, and diastolic pres-
sure, or diaBP) of patients on CHD prevalence. Individuals with
high blood pressure (represented by a score of 3 for both sysBP
and diaBP) were found to have a higher chance of having CHD
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(@

P(CHD =1 | sysBP = 3), P(CHD = 1 | diaBP = 3). We
then considered a hypothetical scenario: what if these patients
with high blood pressure had normal values instead (sysBP = 1
and diaBP = 1)? The corresponding probabilities, P(CHD* =1 |
sysBP =3), CHD*=CHD;,p._, and P(CHD* = 1|diaBP =
3), CHD* = CHDyg;,gp.,, show how lowering blood pressure
could potentially decrease the risk of CHD.

Total Cholesterol (totChol): We explored the potential influence
of total cholesterol (totChol) on the development of CHD using
counterfactual analysis. In the factual scenario, we assessed pa-
tients based on their actual totChol (totChol = 3). The baseline
probability was determined as P(CHD = 1 | totChol = 3). In
the counterfactual scenario, we posed the question: what if these
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Fig. 10. Probability distribution of TenYearCHD for factual and counterfactual scenarios for various variables.

patients with high totChol had normal values (totChol = 0)? The
resulting probability P(CHD* = 1 | totChol = 3), CHD* =
CH D, ycno1—0 Suggests that maintaining normal total cholesterol
levels might be beneficial for reducing CHD risk.

Cigarettes per day (cigsPerDay): Finally, we explored the influ-
ence of smoking. In the factual scenario, we examined patients
based on their actual cigarette consumption (cigsPerDay = 3).
The baseline probability was determined as P(CHD = 1 |
cigsPerDay = 3). The counterfactual scenario asks, “what if”
these patients who smoke heavily cigsPerDay = 3(> 11 cigarettes/
day) had never smoked (cigsPerDay = 0)? The resulting probabil-
ity P(CHD* = 1] cigsPerDay = 3), CHD* = CHD,yperpay—o
suggests that quitting smoking could be beneficial for reducing
CHD risk.

@

Fig. 10 illustrates the line plots generated to explore the distribution
of risk factors for CHD using counterfactual analysis. It can be observed
that the counterfactual scenarios pertaining to sysBP, diaBP, totChol
and cigsPerDay potentially change the probability of CHD = 1.

Diabetes data:. This section explores the application of counterfactual
explanations within the diabetes dataset. By strategically selecting
features, we focus on identifying modifiable risk factors.

(a) HighBP: We examined the relationship between HighBP and the
prevalence of diabetes. In the actual scenario, patients were eval-
uated based on their recorded blood pressure levels (HighBP = 1).
The baseline probability was calculated as P(Diabetes_binary =1 |
HighBP = 1). However, in the hypothetical scenario, we posed
the question: what if these patients with high blood pressure had
normal blood pressure (HighBP = 0)? The resulting probability
P(Diabetes_binary* 1 | HighBP 1),  Diabetes_binary* =
Diabetes_binaryy;,;p.o Suggests a potential benefit of maintain-
ing normal blood pressure to reduce the risk of diabetes. This is
in accordance to the literature which states that Blood pressure
control is just as important as glycemic control [92].

HighChol: We examined the influence of high cholesterol (High-
Chol) on the prevalence of Diabetes. In the factual scenario,
patients were evaluated based on their actual cholesterol mea-
surements (HighChol = 1). The baseline probability was com-
puted as P(Diabetes_binary = 1 | HighChol = 1). However, in
the counterfactual scenario, we considered: what if these patients
with high cholesterol had normal levels (HighChol = 0)? The

(b)
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resulting probability P(Diabetes_binary* = 1 | HighChol = 1),
Diabetes_binary* Diabetes_binaryy;,pcnoi—o highlights the po-
tential advantage of normalising cholesterol levels in mitigating
the risk of diabetes.

BMI: We explored the impact of BMI on diabetes prevalence
using counterfactual analysis. In the factual scenario, we assessed
patients based on their actual BMI (BMI = 2). The baseline prob-
ability was P(Diabetes_binary = 1| BM I = 2) The counterfactual
scenario investigated the hypothetical scenario where patients
with high BMI (BMI = 2) had a normal BMI (BMI = 0). We
aimed to determine the impact of this hypothetical change on
diabetes risk. The resulting probability P(Diabetes_binary* =1 |
BM1I =2), Diabetes_binary* = Diabetes_binarygy;_o suggests a
potential benefit of maintaining a healthy weight (represented by
normal BMI) in reducing diabetes risk.

GenHealth: This study investigated the link between a patient’s
overall health (GenHealth) and their risk of developing dia-
betes using counterfactual analysis. The indicative premise is
that the patient has poor health (GenHealth =3), and the sub-
junctive (counterfactual) premise is if the patient has excel-
lent health (GenHealth =1) in an alternate reality. The base-
line probability was determined as P(Diabetes_binary = 1 |
GenHealth 3) The probability resulting from the subjunc-
tive premise, P(Diabetes_binary* = 1 | GenHealth = 3),
Diabetes_binary* = Diabetes_binaryg.,, g eqnillustrates the poten-
tial benefit of maintaining the overall well-being so as to reduce
the risk of diabetes.

(o)

d

(=7

Fig. 11 illustrates the change in P(Diabetes = 1) as a result of the
counterfactual statements described.

Standard predictive models typically highlight associations between
risk factors and outcomes, but they do not offer insight into how
modifying those factors would alter individual patient trajectories.
In contrast, PCF enables counterfactual analysis that estimates the
expected change in outcome probability under specific hypothetical in-
terventions. For instance, in the Framingham dataset, adjusting systolic
blood pressure from high to normal reduces the estimated probability
of CHD, while in the MIMIC-IV cohort, normalising heart rate results
in a lower predicted probability of extended ICU stay. These estimates
move beyond associative insights by quantifying potential benefits of
intervention at the patient level. Such information is particularly valu-
able in clinical settings where decisions must balance risk, feasibility,
and expected benefit, offering a pragmatic framework to assess how
targeted changes in modifiable variables might influence outcomes.
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Fig. 11. Probability Distribution of Diabetes for factual and counterfactual scenarios for various variables.

6. Conclusion

This study introduces the Probabilistic Causal Fusion (PCF) frame-
work, which combines Causal Bayesian Networks (CBNs) and Prob-
ability Trees (PTrees) to enhance healthcare decision-making. This
innovative approach harnesses the causal structure learned by the CBN
to establish the foundational framework of the PTree. This synergy
yields a three-fold benefit: (1) it captures the inherent causal rela-
tionships within the data, leading to a more robust understanding of
the factors influencing outcomes, (2) it facilitates the incorporation
of domain knowledge through counterfactual analysis, empowering
clinicians to integrate their expertise into the model, and (3) it fa-
cilitates the creation of a centralised repository of causal knowledge
across institutions. This fosters collaboration, knowledge exchange, and
continuous improvement in healthcare delivery.

Rigorous validation using three real-world medical datasets, MIMIC-
IV, Framingham Heart Study, and BRFSS, demonstrates that the pro-
posed methodology achieves prediction performance on par with es-
tablished models. Importantly, these datasets span diverse clinical
domains, critical care, cardiovascular health, and chronic disease,
highlighting the framework’s generalisability across settings. However,
PCF’s true strength lies in its ability to surpass mere prediction and
empower clinicians. Unlike traditional machine learning methods, this
framework facilitates the exploration of hypothetical interventions and
counterfactual scenarios through counterfactual analysis. While PCF
achieves predictive performance that is comparable to standard models
such as decision trees and ensemble methods, it does not consistently
exceed them in accuracy. This outcome highlights a trade-off inherent
in the design of PCF: the framework emphasises causal interpretability
and support for interventional analysis, which may come at the expense
of slight reductions in predictive performance.

This enhanced functionality translates into a more comprehensive
toolkit for healthcare professionals. Unlike conventional models that
focus solely on prediction, PCF enables prediction, interventional rea-
soning, and counterfactual analysis within a single framework. This
multi-faceted capability offers a holistic approach to clinical deci-
sion support, allowing clinicians to not only anticipate outcomes but
also explore the potential effects of modifiable risk factors and hy-
pothetical treatment strategies. This deeper understanding of vari-
able interactions and intervention effects significantly improves clinical
decision-making, ultimately leading to optimised patient care.
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A key strength of this approach is its dual applicability at the in-
dividual and population levels. Clinicians can leverage this framework
to gain insights into broader population trends while simultaneously
exploring personalised treatment options for specific patients through
counterfactual analysis. This versatility empowers healthcare profes-
sionals to tailor their decision-making to the unique circumstances of
each patient while simultaneously informing clinical best practices for
the entire population.

In addition to its predictive and causal capabilities, PCF supports
multi-level interpretability through the integration of sensitivity anal-
ysis and SHAP. Sensitivity analysis provides macro-level insights by
highlighting how changes in causal parameters affect outcomes across
the CBN structure. In contrast, SHAP offers micro-level explanations
by attributing individual predictions to specific input features. This
dual approach enables clinicians to understand both the broader causal
mechanisms at play and the factors driving patient-specific outcomes,
offering a more complete rationale for clinical decision-making.In sum-
mary, the PCF framework offers a combination of (i) robust validation
across diverse clinical datasets, (ii) integrated prediction, intervention,
and counterfactual capabilities, and (iii) interpretability at both macro
and micro levels. These features collectively distinguish PCF as a practi-
cal and transparent alternative to standard predictive models in clinical
machine learning.

Our study suggests that this approach holds significant promise for
evidence-based clinical decision-making. However, further exploration
is needed to address several limitations:

1. Computational and scalability constraints: Optimising computa-
tional efficiency, especially for large datasets, is crucial for broader
applicability. While PTrees offer clear interpretability, they are suscep-
tible to the “curse of dimensionality,” as the number of variables and
branching paths increases. To address this, future work could explore
the use of Chain Event Graphs (CEGs), which have been shown to rep-
resent context-specific and asymmetric relationships more compactly.
Notably, CEGs have been applied to causal inference problems with
success, offering a potential direction to enhance the scalability and
expressiveness of the PCF framework [93]. The computational com-
plexity of the PCF framework also presents a practical limitation. The
ensemble-based structure learning procedures and SHAP value com-
putations, particularly when using KernelExplainer, can be resource-
intensive, especially when applied to high-dimensional datasets such as
MIMIC-IV and BRFSS. These demands may limit the framework’s scal-
ability or its applicability in real-time clinical settings. Future research
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may explore more computationally efficient alternatives or approxi-
mations to maintain interpretability while improving performance in
large-scale environments.

2. Assumptions and causal identifiability: As with all causal infer-
ence methods based on observational data, the validity of PCF’s causal
claims depends on the assumption that all relevant confounders are
observed and included in the dataset. This assumption underpins both
the CBN structure and the resulting interventional and counterfactual
analyses. While model averaging enhances robustness to algorithmic
variability, it does not eliminate the risk of unmeasured confounding.
Moreover, although ensemble-based structure learning improves the
stability of the inferred causal graph, no algorithm can guarantee full
recovery of the true data-generating process, especially in the presence
of limited data or complex dependencies. This limitation highlights the
value of integrating expert domain knowledge alongside data-driven
discovery, particularly in clinical settings where the validity of causal
insights is critical. PCF does not claim to surpass expert-informed
approaches but is designed to flexibly integrate both data-driven dis-
covery and domain expertise. Acknowledging these challenges, future
extensions of the framework could explore validation using experimen-
tal or interventional data to further reinforce the credibility of the
inferred causal relationships.

3. Data-sharing and governance considerations: The proposed cen-
tralised causal knowledge repository depends on the ability to share
pre-trained PCF models and causal structures across institutions. In
practice, such sharing may be constrained by privacy regulations,
interoperability issues, and institutional governance policies. Ensuring
secure, standardised, and ethically governed mechanisms for model
exchange will be essential for successful deployment.

4. Need for prospective and external validation: While this study
focused on specific medical domains, future research should investigate
the framework’s generalisability to a wider range of healthcare settings.
Incorporating clinical expertise in selecting variables for counterfactual
and interventional analysis is essential. Clinicians’ insights can refine
the methodology and enhance its practical utility by ensuring the
system uses the most relevant and useful data.

Addressing these limitations and broadening the scope of applica-
tions, including the potential use of genomic and multi-omics data, will
further demonstrate the framework’s potential to advance healthcare.
Building on this approach can lead to the development of more effec-
tive and transparent tools that enhance patient care. Such tools have
the potential to support evidence-based clinical decision-making and
contribute to a more efficient and impactful healthcare system overall.
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Appendix
See Table 7.
Table 7

Summary of hyperparameters and implementation choices for pcf and baseline
models.

Component Parameter Value/Description

CBN Structure Learning
Algorithms used Hill Climbing (HC), TABU, SaiyanH,

MAHC, Greedy Equivalence Search (GES)

BIC (Bayesys default); algorithm-specific

where applicable

Enabled (outcome-directed search in

Bayesys)

Max parents per node 3

Edge frequency threshold Included if present in at least 2 of 5
algorithms (> one-third frequency, as
per Bayesys default)

Scoring function

Target-aware search

PTree Ensemble (PCF)
Number of trees 100 PTrees (bootstrapped mini-batches)

50 samples per tree

Derived from model-averaged CBN

topological sort (partial ordering)

Not explicitly fixed; controlled via

pruning

Dataset-specific; selected via

pruning-curve analysis, range explored

6 €1[0.0,0.2]

Batch size
Variable ordering

Max depth

Pruning threshold 6

Decision Threshold =
Threshold selection Clinically chosen trade-off between

sensitivity and specificity (z = 0.454)

Baseline Models

Logistic Regression (LR)  Solver = liblinear; default L,
regularisation
Max depth = 4
100 trees; max depth = 15; max leaf
nodes = 150; min samples split = 200;
max features = sqrt; class_weight =
balanced
Standard implementation; no additional
hyperparameter tuning beyond defaults
Objective = binary:logistic; max
depth = 10; learning rate = 1.0; a = 10;
100 estimators

Decision Tree (DT)
Random Forest (RF)

Gradient Boosting (GB)

XGBoost (XGB)

AdaBoost SAMME algorithm; 100 estimators

SVM LinearSVC with polynomial (degree = 2,
interaction-only) and RBF random
features (y = 0.01); C = 1; with
StandardScaler

KNN k = 3; Euclidean distance
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