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 A B S T R A C T

Healthcare decision-making requires not only accurate predictions but also insights into how factors influence 
patient outcomes. While traditional machine learning (ML) models excel at predicting outcomes, such as 
identifying high-risk patients, they are limited in addressing ‘‘what if’’ questions about interventions. This study 
introduces the Probabilistic Causal Fusion (PCF) framework, which integrates Causal Bayesian Networks (CBNs) 
and Probability Trees (PTrees) to extend beyond predictions. PCF leverages causal relationships from CBNs to 
structure PTrees, enabling both the quantification of factor impacts and the simulation of hypothetical interven-
tions. The framework is evaluated on three clinically diverse, real-world datasets, MIMIC-IV, Framingham Heart 
Study, and BRFSS (Diabetes), demonstrating consistent predictive performance comparable to conventional ML 
models, while offering enhanced interpretability and causal reasoning capabilities. In contrast to conventional 
approaches focused solely on prediction, PCF offers a unified framework for prediction, intervention modelling, 
and counterfactual analysis, forming a holistic toolkit for clinical decision support. To enhance interpretability, 
PCF incorporates sensitivity analysis and SHapley Additive exPlanations (SHAP). Sensitivity analysis quantifies 
the influence of causal parameters on outcomes such as Length of Stay (LOS), Coronary Heart Disease (CHD), 
and Diabetes, while SHAP highlights the importance of individual features in predictive modelling. This dual-
layered interpretability offers both macro-level insights into causal pathways and micro-level explanations for 
individual predictions. By combining causal reasoning with predictive modelling, PCF bridges the gap between 
clinical intuition and data-driven insights. Its ability to uncover relationships between modifiable factors and 
simulate hypothetical scenarios provides clinicians with a clearer understanding of causal pathways. This 
approach supports more informed, evidence-based decision-making, offering a robust framework for addressing 
complex questions in diverse healthcare settings.
1. Introduction

Effective healthcare requires not just accurate predictions but also a 
deeper understanding of the factors that drive patient outcomes. While 
traditional machine learning (ML) models are proficient at identifying 
patterns and forecasting risks, such as predicting which patients are 
more likely to develop a condition, they often fall short in evaluating 
how specific interventions might alter these outcomes. This predictive 
focus limits their utility in addressing causal questions, such as esti-
mating the impact of treatments or other modifiable factors on patient 
trajectories. To bridge this gap, there is a growing need for approaches 
that go beyond prediction, enabling the quantification of causal effects 
and simulation of intervention outcomes.
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Causal ML addresses these gaps by estimating treatment effects and 
answering counterfactual questions, such as ‘‘How would a patient’s 
outcome change if a different treatment were administered?’’ Unlike 
traditional ML, which focuses on correlations, causal ML is built on the 
foundation of causal inference [1], enabling a deeper understanding of 
relationships and supporting evidence-based decision-making [2]. For 
instance, traditional ML might predict a patient’s likelihood of develop-
ing diabetes [3], but causal ML can estimate how that likelihood would 
change under specific interventions, such as a lifestyle modification or 
a new medication [4]. These capabilities are particularly valuable in 
healthcare, where understanding cause–effect relationships is critical 
for developing targeted interventions [5].
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To support both causal reasoning and practical interpretability, we 
propose the Probabilistic Causal Fusion (PCF) framework, which com-
bines Causal Bayesian Networks (CBNs) with ensembles of Probability 
Trees (PTrees). CBNs model dependencies between variables using 
directed acyclic graphs (DAGs) [1], providing a principled foundation 
for causal inference. While CBNs are well-suited for modelling joint 
distributions, their global structure can make patient-specific reasoning 
paths difficult to interpret in practice.

To address this, PCF incorporates Probability Trees, interpretable, 
rule-based models that align more naturally with clinical workflows
[6,7]. Their hierarchical paths provide clear, context-specific deci-
sion rules (e.g., ‘‘BMI > 30 → HbA1c > 6.5% → High ICU stay 
risk’’), which clinicians can easily follow and validate. These paths also 
capture context-specific dependencies that are challenging to express 
compactly in CBNs, as shown in staged tree learning [8]. In addition 
to their transparency, PTrees are computationally efficient and well-
suited to ensemble learning strategies such as bootstrap aggregation, 
which improves robustness and generalisability. The main limitation of 
PTrees, however, lies in their dependence on predefined variable order-
ings, a process that traditionally relies on expert input and introduces 
subjectivity, inefficiency, and inconsistency.

This reliance on expert-defined sequences not only introduces bias 
but also limits scalability. To overcome this, PCF leverages the causal 
structure learned from CBNs to inform variable ordering, an essential 
step in guiding PTree construction. While CBNs can provide a topo-
logical ordering from the learned graph structure, recent works show 
that structure learning algorithms are sensitive to dataset column order, 
leading to instability in learned graphs [9]. To mitigate this, PCF aggre-
gates outputs from multiple CBNs learned under varying conditions and 
derives a consensus topological ordering based on stable, frequently 
occurring edges. This data-driven ordering aligns PTree decision paths 
with inferred causal dependencies, reducing reliance on expert spec-
ification and preserving clinical interpretability. Clinicians may still 
refine the ordering locally if desired, but without needing to manually 
reconstruct the full structure. The result is a hybrid approach that 
balances automated discovery with domain expertise, enhancing both 
robustness and transparency in complex, high-dimensional datasets 
such as electronic health records.

This hybrid approach is particularly valuable in clinical settings, 
where observational data are abundant and experimental studies are 
often impractical. Unlike Randomised Controlled Trials (RCTs), which 
are costly and time-consuming, PCF enables causal inference and in-
tervention simulation directly from observational data. By moving 
beyond purely predictive models and towards transparent causal rea-
soning, PCF supports clinicians in exploring not just what might hap-
pen, but how and why, and how it could be changed. These capa-
bilities are made possible by PCF’s hierarchical design, which brings 
together the global structure-learning strength of CBNs with the local 
interpretability of PTrees.

The hierarchical architecture of PCF enhances its clinical relevance 
by combining the complementary strengths of CBNs and PTrees. CBNs 
are used to uncover dependencies among clinical variables, such as 
comorbidities and temporal trends, while PTrees translate these depen-
dencies into interpretable, cohort-specific decision rules. This layered 
design supports the integration of heterogeneous data sources, in-
cluding bedside monitoring and structured electronic health records, 
into a unified framework for causal reasoning. Rather than claiming 
to recover true causal structure with certainty, PCF aligns the struc-
ture of Probability Tree models with the conditional dependencies 
inferred by CBNs, dependencies that, under standard assumptions, 
encode hypothesised causal relationships through patterns of condi-
tional independence. In doing so, the framework reduces the need for 
manually defined variable hierarchies and improves the consistency of 
modelling across settings. While domain expertise remains important, 
PCF helps mitigate uncalibrated subjectivity by integrating data-driven 
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structure learning with opportunities for expert refinement, thereby 
enhancing both reproducibility and clinical interpretability.

Traditionally, constructing PTrees has been an iterative process 
reliant on domain experts to define variable orderings [7], which 
introduces challenges such as:

1. Subjectivity: Expert knowledge may be incomplete or biased, 
leading to suboptimal structures.

2. Inefficiency: Manual construction is time-intensive, especially 
for complex datasets.

3. Data Inconsistency: Sole reliance on expert-defined structures 
can overlook key relationships present in the data.

By employing an ensemble learning approach, PCF mitigates these 
limitations, offering a robust and generalisable solution that reduces 
overfitting and enhances performance.

Beyond its core modelling capabilities, the PCF framework also 
lays the foundation for a centralised causal knowledge repository, an 
initiative designed to address several persistent challenges in healthcare 
analytics. In particular, it responds to the difficulty many smaller 
institutions face in building robust causal models from limited local 
data, and to the fragmented nature of causal discovery across the 
healthcare sector. By enabling the sharing of pre-trained PCF mod-
els, alongside their underlying causal graphs across organisations, the 
framework supports a more collaborative and equitable approach to 
model development. This allows smaller centres to build upon validated 
causal structures and adapt them to local contexts, rather than starting 
from scratch. For example, a large urban hospital (Hospital A) might 
train a PCF model on its extensive ICU dataset, producing a validated 
causal graph and ensemble of Probability Trees. A smaller regional 
hospital (Hospital B), with limited local data, could then reuse this 
pre-trained PCF model as a foundation for its own decision support 
system. By fine-tuning the model with local data or adapting selected 
components, Hospital B can deploy a robust, interpretable tool without 
the need for full retraining, thereby accelerating implementation and 
improving accessibility in resource-constrained settings.

Crucially, PCF’s modular architecture, separating structure learning 
via CBNs from outcome modelling via PTrees, makes it uniquely well-
suited to this kind of distributed refinement. Over time, such a system 
could accelerate the translation of causal insights into practice, pro-
mote greater methodological consistency, and support the development 
of generalisable models that are responsive to the needs of diverse 
healthcare environments.

In this work, we leverage the PCF framework to support prediction, 
intervention, and counterfactual analysis in three distinct clinical con-
texts. First, we aim to predict and identify factors associated with the 
length of stay in the Intensive Care Unit (ICU). Second, the framework 
is applied to assess the risk of Chronic Heart Disease (CHD) and inves-
tigate potential modifiable factors that could mitigate its progression. 
Finally, we utilise the framework to predict the risk of diabetes and 
analyse the influence of various risk factors on its onset.

The main contributions of this work are summarised as follows:

• We propose a framework, Probabilistic Causal Fusion (PCF), that 
combines Causal Bayesian Networks (CBNs) with ensembles of 
Probability Trees (PTrees) to enable predictions, interventions, 
and counterfactual analysis in healthcare. This integration ad-
dresses the limitations of traditional PTree construction, such as 
reliance on domain expertise for variable ordering, by leveraging 
causal relationships identified through CBNs.

• The use of an ensemble of PTrees improves predictive perfor-
mance and robustness. By balancing the trade-off between bias 
and variance, the ensemble approach mitigates risks of overfitting 
or underfitting and enhances generalisability.

• Methodological refinements are introduced in computing transi-
tion probabilities within the PTree framework. Specifically, data 
is partitioned using empirical marginal probabilities, while causal 
relationships derived from CBNs inform split decisions, enabling 
more data-driven and effective model construction.
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Fig. 1. Different steps involved in the PCF framework. The first module addresses data pre-processing to shape the input required for the CBN. The next module 
involves generating individual CBNs and creating a model-averaging graph. Subsequently, the ensemble of PTrees is developed based on the variable order from 
the model-averaging graph. The final module involves evaluating the overall performance of PCF.
• The applicability and utility of the PCF framework are demon-
strated through its application to multiple real-world healthcare 
datasets.

Existing causal inference methods each offer valuable capabilities: 
model-agnostic estimators excel at capturing treatment effect hetero-
geneity, deep learning approaches effectively handle high-dimensional 
confounding, and structural causal models provide a principled founda-
tion for reasoning across interventions and counterfactuals. However, 
these approaches often fall short in clinical decision support due to lim-
itations in interpretability, scalability, or support for path-specific and 
symbolic reasoning. PCF addresses this gap by integrating the graphical 
structure of Causal Bayesian Networks with the local interpretability 
of Probability Trees, enabling transparent, patient-level inference. By 
supporting interventional and counterfactual analysis within a scalable, 
modular framework, PCF aims to provide clinicians with both the 
rigour and clarity needed for practical causal reasoning.

The structure of the paper is as follows. Section 2 provides an 
overview of the relevant literature, establishing the context and mo-
tivation for this work. Section 3 describes the proposed framework 
in detail, including the steps involved in its construction and imple-
mentation. Section 4 presents the application of the framework to 
three distinct clinical case studies, while Section 5 discusses the results 
obtained from these applications. Finally, Section 6 provides conclusive 
remarks and directions for future work.

2. Relevant works

2.1. Traditional ML vs. Causal ML

Traditional ML has become a cornerstone in healthcare for tasks 
such as risk prediction, patient stratification, and outcome forecast-
ing [10,11]. These models are highly effective at identifying patterns 
and correlations, enabling predictions such as the likelihood of disease 
onset or hospital readmissions [12–14]. However, traditional ML lacks 
the ability to answer counterfactual questions or estimate treatment 
effects, as it is inherently focused on predictive accuracy rather than 
causal reasoning [15,16].
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In contrast, causal ML seeks to address ‘‘what if’’ questions by 
estimating the causal effect of interventions on outcomes. For instance, 
rather than simply predicting the probability of diabetes onset, causal 
ML can assess how this probability might change if a patient adopts a 
new medication or lifestyle modification [17,18]. These capabilities en-
able healthcare providers to explore counterfactual scenarios and make 
data-driven decisions that go beyond prediction to inform treatment 
planning and resource allocation.

Causal ML requires additional considerations compared to tradi-
tional ML, such as the need to account for unobservable outcomes 
and confounding variables. For example, the ‘‘fundamental problem 
of causal inference’’ [1,19] states that only factual outcomes under a 
given treatment are observed, while counterfactual outcomes remain 
unobserved. Estimating causal effects, therefore, requires more than 
just assumptions; it depends on having access to a sufficient set of 
measured covariates that enable identification, for instance, through 
adjustment sets that block all backdoor paths between treatment and 
outcome. Moreover, causal models must consider both direct and me-
diated (indirect) effects, as interventions may propagate through the 
system in complex ways. For example, a smoking cessation program 
might influence diabetes risk indirectly through changes in body mass 
index (BMI), necessitating a structured causal framework to capture 
such dependencies.

2.2. Applications of CBNs in healthcare

CBNs are a widely used tool in causal ML for modelling rela-
tionships among variables through a directed acyclic graph (DAG) 
structure. CBNs allow for the incorporation of prior knowledge and 
probabilistic reasoning, making them particularly effective for under-
standing complex dependencies in healthcare data. For instance, Ra-
jendran et al. [20] employed CBNs to integrate risk factor analysis in 
breast cancer research, facilitating early detection and risk stratifica-
tion. Shahmirzalou et al. [21] applied CBNs to recurrent breast cancer 
data to predict survival outcomes and guide personalised treatment 
strategies. Similarly, Jang et al. [22] leveraged CBNs to model risks 
associated with radiation therapy, offering support for personalised 
oncology care.
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CBNs have also been applied to explore relationships between car-
diovascular risk factors and related conditions, as demonstrated by 
Ordovas et al. [23]. These examples highlight the versatility of CBNs 
in identifying risk factors, modelling disease progression, and sim-
ulating the effects of interventions. However, while CBNs excel at 
representing causal relationships, their construction often requires sig-
nificant domain expertise and computational resources, which may 
limit scalability.

2.3. Probability Trees (PTrees) in causal modelling

Probability Trees (PTrees) offer an intuitive and sequential repre-
sentation of probabilistic relationships. In the context of this work, we 
adopt a representation where nodes correspond to variable instantia-
tions and branches are labelled by events or outcomes, aligning more 
closely with a Moore-style structure in automata theory. This design 
choice supports clearer causal interpretation by associating each deci-
sion point (node) with a specific variable and deferring probabilistic 
branching to the edges. While alternative formulations exist, such as 
Mealy-style trees where transitions depend on both current states and 
input labels, our choice is motivated by the need to represent sequential 
dependencies and interventions transparently. This structure is par-
ticularly suitable for modelling healthcare processes, where decisions 
unfold over time and are influenced by evolving clinical states [6].

Despite their simplicity and expressiveness, PTrees have received 
relatively less attention in the machine learning literature compared 
to CBNs or structural causal models. Ambags et al. [7] proposed a hy-
brid approach combining probabilistic fuzzy decision trees with causal 
reasoning, applying it in two medical case studies to demonstrate its 
potential for real-world applications. Traditional PTree construction, 
however, often depends on domain expertise to determine variable 
orderings. While expert input is valuable, such reliance can introduce 
subjectivity and inefficiency, and expert-defined orderings may not 
always align with empirical dependencies in the data.

The Probabilistic Causal Fusion (PCF) framework addresses these 
challenges by integrating ensembles of PTrees with causal orderings 
derived from CBNs. These orderings are not treated as absolute ground 
truth but as a data-driven basis that can be refined through calibration 
with clinical expertise. This hybrid design promotes consistency and re-
producibility, while ensemble methods reduce overfitting and enhance 
robustness across heterogeneous patient cohorts.

2.4. Advances in causal ML for healthcare

Recent advances in causal ML demonstrate its potential for im-
proving healthcare decision-making by estimating treatment effects 
and simulating counterfactual scenarios. These methods have been 
applied to a variety of clinical challenges, from estimating the effects 
of medication adherence on diabetes progression to predicting survival 
probabilities under different oncology treatment plans [2,5]. By inte-
grating causal ML techniques into clinical workflows, researchers aim 
to bridge the gap between prediction and actionable insights, enabling 
data-driven strategies for improving patient outcomes.

Building on this foundation, emerging work is exploring how causal 
reasoning can be integrated with high-capacity deep learning models. 
Nan et al. [24] demonstrate how visual diagnostic patterns used by ex-
pert pathologists can be captured by neural networks in a causally inter-
pretable manner, improving transparency in high-dimensional
histopathology tasks. Complementary advances in causal representa-
tion learning [25] propose methods for isolating relevant features and 
estimating counterfactual outcomes in complex image-based settings, 
offering pathways to more generalisable and robust clinical models.

However, causal ML comes with its own challenges. Assumptions 
about unmeasured confounding, model scalability, and the reliability 
of observational data remain critical concerns [26]. Addressing these 
limitations through frameworks like PCF, which combine causal rea-
soning with robust predictive modelling, represents an important step 
towards leveraging causal ML in diverse healthcare contexts.
4 
2.5. Comparison with existing causal inference methods

Contemporary causal inference approaches can be broadly classified 
into model-agnostic estimators, deep representation learning models, 
and structural causal models, each with distinct strengths and limita-
tions. The PCF framework is designed to bridge methodological and 
practical gaps across these paradigms.

First, non-parametric ITE estimators such as Causal Forests [27] and 
Bayesian Additive Regression Trees (BART) [28,29] provide flexible 
estimation of treatment heterogeneity under the unconfoundedness 
assumption. While effective at modelling complex treatment-response 
relationships, these methods lack model-inherent support for explicit 
counterfactual reasoning or principled interventional analysis (e.g., via 
do-calculus).

Second, deep causal representation learning methods, including 
TARNet and Counterfactual Variational Autoencoders (CEVAE) [30,
31], mitigate confounding by learning latent representations. These 
models are particularly suited for high-dimensional observational data, 
but they often operate as black boxes, offering limited interpretabil-
ity and no explicit support for tracing causal pathways or executing 
symbolic interventions. Moreover, their architectures are typically re-
stricted to binary or single-shot treatments, limiting their applicabil-
ity in scenarios involving multi-valued or sequential interventions, as 
commonly encountered in clinical settings.

Third, Structural Causal Models (SCMs) and CBNs [1,32] provide 
a rigorous formalism for causal reasoning across all three rungs of 
Pearl’s causal hierarchy. However, their expressiveness comes at a 
cost: SCMs typically require predefined structural equations or strong 
assumptions, such as causal sufficiency and faithfulness, which can be 
difficult to validate or scale to high-dimensional, mixed-type datasets. 
The PCF framework also inherits these assumptions through its reliance 
on CBNs, but it avoids the need for structural equations by using a mod-
ular, tree-based construction that improves computational tractability 
and interpretability.

Building on this foundation, PCF combines the structural guidance 
of CBNs with a probabilistic tree-based architecture that preserves 
conditional dependencies while enabling efficient computation of in-
terventional distributions, 𝑃 (𝑌 ∣ 𝑑𝑜(𝑋)). Unlike SCMs, it does not 
require full specification of structural functions, and it supports coun-
terfactual inference via a twin-tree construction [6], facilitating patient-
level ‘‘what if’’ reasoning in a transparent format. Through sparsity 
constraints and pathwise interpretability, PCF retains the semantic 
clarity of graphical models while offering the scalability and flexibility 
demanded by real-world healthcare applications.

In essence, PCF occupies a practical middle ground between sym-
bolic and statistical causal methods, combining the interpretability of 
graphical models with the non-parametric adaptability of tree-based 
learners, while addressing core limitations of existing approaches in 
clinical decision support.

3. Methodology-PCF framework

We introduce PCF, a hybrid framework that integrates CBNs with 
ensembles of PTrees to support prediction, intervention modelling, and 
counterfactual analysis. Traditional PTree construction often depends 
on expert-defined variable orderings and empirical transition estimates, 
an approach that is labour-intensive, prone to variation across studies, 
and difficult to standardise. PCF addresses these limitations by using 
structural dependencies derived from CBNs to generate a data-driven 
variable ordering that reflects conditional independencies and provides 
a reproducible scaffold for tree construction. Importantly, this ordering 
defines a partial hierarchy rather than a rigid sequence: it constrains 
only those variables for which directional dependencies are inferred, 
while leaving flexibility for reordering or excluding variables that are 
weakly connected or clinically irrelevant. This design enhances inter-
pretability and computational efficiency without compromising causal 
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consistency. Clinicians may still refine the ordering locally to enhance 
interpretability, but without the need to redesign the global structure.

In parallel, PCF addresses several practical challenges of CBNs. 
While CBNs offer a principled framework for capturing causal depen-
dencies, their global structures can be difficult to interpret at the patient 
level and are sensitive to variability in structure learning. PCF mitigates 
these issues by averaging across multiple candidate graphs to high-
light stable dependencies, and by embedding these dependencies into 
PTrees, where they appear as transparent, rule-based pathways. This 
hybrid design improves interpretability and robustness, while ensemble 
learning further strengthens predictive performance by balancing bias 
and variance across heterogeneous datasets. Although PCF does not 
resolve the fundamental problem that no algorithm can guarantee full 
recovery of the true causal structure, it provides a more stable and com-
putationally efficient scaffold for building clinically meaningful models. 
Fig.  1 outlines the key stages of the PCF pipeline, including data pre-
processing, CBN generation, model-averaging graph construction, and 
PTree ensemble development.

3.1. Causal Bayesian Network (CBN) construction

PCF begins by constructing CBNs to uncover causal relationships 
among variables and identify directed pathways influencing the target 
outcome 𝑌 . These causal structures form the foundation for build-
ing PTrees, which translate causal dependencies into explicit decision 
paths. Formally, let  = {𝑋1, 𝑋2,… , 𝑋𝑛, 𝑌 } denote the set of observed 
variables, with 𝑌  as the outcome of interest. A CBN is defined as a DAG 
𝐺 = ( , ), where nodes represent variables and edges (𝑋𝑖 → 𝑋𝑗 ) ∈ 
encode potential causal influences. The joint distribution over variables 
factorises according to the DAG structure as defined in Eq.  (1), where 
Pa(𝑋𝑖) denotes the set of parent variables of 𝑋𝑖 in 𝐺. The resulting 
topology defines a partial ordering that reflects the inferred causal 
hierarchy. 

𝑃 (𝑋1,… , 𝑋𝑛) =
𝑛
∏

𝑖=1
𝑃 (𝑋𝑖 ∣ Pa(𝑋𝑖)) (1)

CBNs were chosen as the foundation of PCF due to their theoret-
ical capacity to encode and reason about causal dependencies under 
well-established assumptions, including causal sufficiency, the Markov 
condition, and faithfulness. Their DAG structure allows for explicit rep-
resentation of conditional independencies, enabling interventional and 
counterfactual inference through graphical separation and do-calculus.

The construction of the CBN proceeds through three stages: struc-
ture learning, model averaging and topological sorting.
Structure learning . The construction of the CBN begins with structure 
learning, implemented through a suite of established algorithms: Hill 
Climbing (HC) [33,34], TABU Search [35], SaiyanH [36], Model-
Averaging Hill Climbing (MAHC) [37], and Greedy Equivalence Search 
(GES) [38]. Each of these algorithms explores candidate Directed 
Acyclic Graphs (DAGs) in order to identify the network structure 𝐺
that maximises a predefined scoring function 𝑆(𝐺 ∣ data). Formally, 
the optimisation problem can be expressed as: 
𝐺 = argmax

𝐺
𝑆(𝐺 ∣ data), (2)

where the score 𝑆 evaluates the goodness of fit between the candidate 
graph and the observed data.

Structure learning is performed using the open-source Bayesian 
network structure learning system Bayesys [39], which supports target-
aware search, focusing the discovery process on variables with direct 
influence over the outcome 𝑌 . The selected algorithms are chosen 
for their complementary strengths: HC is computationally efficient 
but prone to local optima; TABU introduces diversification strategies 
to escape local minima; SaiyanH integrates heuristic biasing; MAHC 
stabilises solutions through repeated sampling; and GES scales well 
to high-dimensional data, though it could be less effective on small 
5 
samples. Also, these algorithms are selected for their capability to 
incorporate the target variable during model construction and to han-
dle diverse knowledge approaches, including direct relationships and 
forbidden edges [40]. While the selected score-based algorithms learn 
DAGs that serve as approximations of the underlying causal struc-
ture under standard assumptions (causal sufficiency, faithfulness, and 
acyclicity), they do not provide formal statistical guarantees. These 
methods are, however, effective for constructing interpretable causal 
scaffolds to support downstream counterfactual analysis. Incorporating 
statistical testing to validate or refine edge inclusion represents an 
important direction for future enhancement of the framework.

Given the inherent uncertainty in edge direction, especially in the 
absence of domain priors, we apply a model averaging strategy to 
mitigate algorithmic bias. By generating multiple candidate structures 
and identifying recurring patterns across them, we construct a consen-
sus graph highlighting stable causal relationships. This ensemble-based 
approach provides a more reliable and interpretable foundation for 
downstream PTree construction.
Model averaging . To integrate the outputs from multiple structure 
learning algorithms, we construct an averaged network 𝐺avg using 
Bayesys. This consensus graph captures only the most consistently 
inferred relationships, reducing the influence of algorithm-specific vari-
ance and improving structural reliability. Edges are included in 𝐺avg
based on their frequency of occurrence across the candidate graphs, 
subject to the following criteria:

a. Directed Edges: Add directed edges 𝑒 = (𝑢, 𝑣) to 𝐺avg starting 
with the edges that occur most frequently across input graphs, 
ensuring no cycles are formed:
𝑒 ∈ 𝐺avg if freq(𝑒) > threshold and no cycle
If adding an edge 𝑒 would create a cycle, reverse the edge:
𝑒 → 𝑒−1 if 𝑒 forms a cycle

b. Undirected Edges: Add undirected edges 𝑒 = {𝑢, 𝑣} to 𝐺avg, 
skipping those already added as directed edges:
𝑒 ∈ 𝐺avg if freq(𝑒) > threshold

c. Cycle Handling:Add directed edges from the cycle-inducing edge 
set 𝐶:
𝑒 ∈ 𝐺avg if 𝑒 ∈ 𝐶 and occurs frequently
The model-averaging procedure draws on ensemble methods in 
causal discovery, using a majority-vote rule to decide edge in-
clusion and orientation while keeping the graph acyclic. Instead 
of relying on a single algorithm, it highlights dependencies that 
recur across several candidate graphs, producing a representative 
structure. The resulting consensus DAG therefore reflects recur-
ring patterns across multiple, and often incompatible, models, 
and aligns with strategies used in other relevant studies [41–
43]. Although no single procedure can guarantee recovery of 
the full causal data-generating process, the consensus graph pre-
serves the strongest and most consistently inferred dependen-
cies, thereby retaining meaningful causal content. This approach 
reduces algorithm-specific variability, improves robustness, and 
provides a stable foundation for downstream PTree construction.
Building on this foundation, the PCF framework extends the 
practical utility of CBNs in two key ways. First, it stabilises 
structural learning through model averaging, as outlined above, 
ensuring that only reliably inferred dependencies inform down-
stream inference. Second, it overlays this consensus structure with 
a Probability Tree, enabling modular and interpretable simula-
tions of interventional and counterfactual scenarios. While PCF 
does not resolve challenges such as unmeasured confounding, an 
inherent limitation of observational causal inference, it offers a 
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systematic mechanism for incorporating domain expertise post 
hoc. This allows for refinement of the causal structure through 
informed reordering or exclusion of variables. In this respect, PCF 
does not aim to expand formal identifiability, but rather to en-
hance the framework’s practical applicability through improved 
robustness, interpretability, and clinician-guided adaptability.

Topological sorting.. Once the consensus graph 𝐺avg is constructed, 
we derive a topological ordering 𝜋 such that: 

𝜋 = topological_sort(𝐺avg) (3)

This results in a partial order over the variable nodes, reflecting the 
causal dependencies encoded in the DAG: each variable appears after 
its parents in the ordering. Among different available approaches [44,
45], we employ Kahn’s algorithm for its efficiency and suitability for 
moderately sized DAGs.

By deriving the ordering from data rather than relying solely on 
expert-defined hierarchies, this step reduces subjectivity and preserves 
subtle yet meaningful dependencies captured during structure learn-
ing. Although clinicians may refine the ordering locally to enhance 
interpretability, PCF adheres to the partial ordering constraints inferred 
from the causal structure, ensuring that any such modifications remain 
consistent with the DAG. The variable order 𝜋 serves as the backbone 
for PTree construction, guiding branching decisions and contributing 
to both predictive accuracy and interpretability of the final ensemble 
model.

Sensitivity analysis. Sensitivity analysis is performed to assess the 
responsiveness of nodes to changes in their parent and ancestor nodes
[46]. For a node 𝑋𝑖 with parent 𝑋𝑗 , sensitivity 𝑆 is defined as: 

𝑆 =
𝜕𝑃 (𝑋𝑖)
𝜕𝜃𝑋𝑗

(4)

where 𝜃𝑋𝑗
 represents the parameters in the Conditional Probability 

Table (CPT) of 𝑋𝑗 . High sensitivity indicates that small changes in 
𝜃𝑋𝑗

 result in significant changes in the posterior distribution of 𝑋𝑖, 
suggesting a strong dependency. Conversely, low sensitivity implies 
that large changes in 𝜃𝑋𝑗

 have minimal impact on 𝑋𝑖’s distribution, 
indicating a weak dependency.

The posterior probability 𝑇  of the selected state of the target node, 
given the parameter 𝑝, is represented by the following general linear 
rational functional form: 

𝑇 =
𝑎 ⋅ 𝑝 + 𝑏
𝑐 ⋅ 𝑝 + 𝑑

(5)

The sensitivity analysis algorithm calculates the coefficients 𝑎, 𝑏, 𝑐, 
and 𝑑. The derivative, which is the basic measure of sensitivity, is given 
by: 

𝐷 = 𝑎 ⋅ 𝑑 − 𝑏 ⋅ 𝑐
(𝑐 ⋅ 𝑝 + 𝑑)2

(6)

The denominator is positive, indicating that the sign of the deriva-
tive is constant for all values of 𝑝. By substituting 0 and 1 for 𝑝 (noting 
that 𝑝 is a probability), we can calculate the range within which the 
posterior will change if 𝑝 is modified across its entire range, defined 
by: 

𝑝1 =
𝑏
𝑑

(7)

𝑝2 =
𝑎 + 𝑏
𝑐 + 𝑑

(8)

Sensitivity analysis is crucial in understanding the stability and 
robustness of the model. It helps identify the most influential parame-
ters in the network, guiding targeted interventions and enhancing the 
interpretability of the model. We use the GeNIe BN software [47] to 
perform this analysis.
6 
3.2. Probability tree construction

Building on the causal structure defined by the model-averaged 
graph 𝐺avg, we construct PTrees through a three-step process de-
signed to support interpretable and data-efficient prediction. PTrees 
translate the causal relationships identified by CBNs into explicit, rule-
based paths that enable instance-level reasoning. While CBNs excel at 
probabilistic inference, their global structure can obscure the logic be-
hind individual predictions. PTrees, by contrast, provide a transparent 
framework that clinicians can interpret. Formally, each node 𝑛 in a 
PTree is defined as a tuple 𝑛 = (𝑢, 𝑆, 𝐶), where 𝑢 is a unique identifier, 𝑆
is a list of variable assignments, and 𝐶 is an ordered set of transitions 
{(𝑝𝑚, 𝑚)}, with 𝑝𝑚 ∈ [0, 1] denoting the transition probability to child 
node 𝑚. These probabilities satisfy ∑ 𝑝𝑚 = 1. The root node has no 
parent; leaves have empty transition sets. A complete path from root to 
leaf constitutes a full realisation, whose joint probability is computed 
as the product of transitions along that path: 

𝑃 (realisation) =
𝑘
∏

𝑖=1
𝑝𝑖. (9)

At each node, the variables in 𝑆 are assigned concrete values, condi-
tioning all subsequent transitions. To avoid exponential tree growth, we 
employ (1) the CBN-derived topological ordering 𝜋 to guide variable 
splits, (2) pruning based on transition probabilities to remove low-
support branches, and (3) ensemble learning on bootstrapped samples 
to maintain tractability while improving generalisability. This combi-
nation balances interpretability, robustness, and scalability, key issues 
for real-world clinical decision support.

The process for building PTrees comprises three main steps: creating 
the tree from the input data, ensemble learning step and the prediction 
process.

Create tree from data. The process commences with Algorithm 1 
(create_tree_from_data), which outlines the construction of a PTree from 
a given dataset and the variable order derived from the previously 
learned CBN. The ordering 𝜋 ensures that nodes are expanded in a 
sequence consistent with the conditional dependencies encoded in the 
DAG 𝐺.

a. Root Level: A PTree 𝑇  is initialised from dataset 𝐷 using the 
variable order 𝑝𝑖. At the root, data are partitioned according to 
the target variable 𝑌 , and empirical marginal probabilities are 
computed as: 

𝑝(𝑣) =
Count(𝑣)

Total Samples (10)

where 𝑝(𝑣) denotes the marginal probability for value 𝑣 of 𝑌 . 
This initial partitioning establishes a probabilistic baseline for 
subsequent splits.

b. Transition Probabilities: For each subsequent node, conditional 
probabilities are calculated using the parent–child relationships 
defined in the CBN: 
𝑃 (𝑋𝑖 ∣ Pa(𝑋𝑖)) =

Count(𝑋𝑖,Pa(𝑋𝑖))
Count(Pa(𝑋𝑖))

(11)

where Pa(𝑋𝑖) are the parent variables of 𝑋𝑖 in 𝐺. This dif-
fers from conventional PTrees, where splits depend solely on 
local frequency counts. By constraining probability estimation to 
parent–child relationships encoded in the DAG, the PTree explic-
itly incorporates causal dependencies inferred from the CBN. This 
ensures that branches reflect not just statistical associations but 
dependencies consistent with the learned causal structure.

c. Pruning: To prevent overfitting, branches with probabilities be-
low a pruning threshold 𝜃 are removed. Rather than fixing 𝜃
globally, we optimise it for each dataset using pruning-curve 
analysis. This involves evaluating predictive performance across a 
range of 𝜃 values and selecting the point that balances model com-
plexity with generalisation. In this way, pruning retains branches 
that provide meaningful conditioning for subsequent variables, 
while discarding those that contribute little beyond noise.
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Ensemble learning . A key innovation of PCF is the use of ensemble 
learning to enhance robustness and generalisability. A single PTree may 
overfit to local data patterns or reflect sampling variability, particularly 
in high-dimensional healthcare datasets. By combining multiple PTrees 
trained on different data partitions, the ensemble reduces variance 
while preserving the interpretability of individual trees.

The ensemble process is implemented through the ensemble_probabi
lity_trees function, which follows a three-step strategy:

a. Data Splitting: The dataset 𝐷 is partitioned into 𝑘 disjoint sub-
sets {𝐷1, 𝐷2,… , 𝐷𝑘}, through stratified folds to maintain class 
balance. This splitting procedure is repeated over multiple runs 
with different random seeds, ensuring each tree in the ensemble 
is trained on slightly varied distributions. This replication intro-
duces diversity among trees and helps mitigate overfitting, while 
still maintaining representative class proportions in each fold.

b. Tree Construction: For each subset 𝐷𝑖, a PTree 𝑇𝑖 is constructed 
using Algorithm 1 and the CBN-derived variable order 𝜋:
𝑇𝑖 = create_tree_from_data(𝐷𝑖, 𝜋).

Because each tree shares the same causal ordering but is trained 
on different subsets, the ensemble captures cohort-specific varia-
tions while maintaining structural consistency across models.

c. Model Aggregation: The root nodes of the ensemble are stored 
in a list ptrees for inference. Predictions from individual trees 
are later aggregated, allowing the ensemble to smooth out id-
iosyncratic errors from individual PTrees and yield more stable 
outputs.

Prediction process. Predictions are generated by aggregating outputs 
from all PTrees in the ensemble, a strategy that reduces variance while 
retaining interpretability.

a. Individual Predictions: For each PTree 𝑇𝑖, a prediction 𝑦̂𝑖 is 
obtained by traversing the tree according to the attribute values 
of the input instance: 
𝑦̂𝑖 = Predict(𝑇𝑖, instance). (12)

Each tree reflects both the causal ordering derived from the CBN 
and the statistical patterns in its training subset 𝐷𝑖. Algorithm 2 is 
used to compute the conditional probability of a class given the 
observed feature conditions, ensuring that local predictions are 
consistent with the inferred causal dependencies.

b. Aggregation: Predictions are combined across the 𝑘 ensemble 
members to obtain a consensus estimate: 

𝑦̂avg =
1
𝑘

𝑘
∑

𝑖=1
𝑦̂𝑖. (13)

This averaging smooths out biases introduced by individual
PTrees and provides a more calibrated probability estimate, par-
ticularly important in heterogeneous healthcare data where
single-model predictions may be unstable.

c. Threshold Classification: A final class label is assigned by com-
paring 𝑦̂avg against a threshold 𝜏:

Class =
{

Positive if 𝑦̂avg > 𝜏,
Negative otherwise.

The threshold 𝜏 is not fixed a priori but can be tuned through 
cross-validation to maximise application-specific performance
metrics, or adjusted post hoc to prioritise sensitivity over speci-
ficity in high-risk clinical screening tasks.

This ensemble-based inference procedure balances bias and vari-
ance across partitions, produces calibrated probability estimates, and 
offers an interpretable mechanism for both prediction and uncertainty 
quantification.
7 
SHapley additive explanations (SHAP). To enhance model inter-
pretability and elucidate feature importance, SHAP [48] was integrated 
into the framework. SHAP values provide a unified measure of feature 
importance, enabling us to understand the contribution of each fea-
ture to the model’s predictions. This enhances the transparency and 
trustworthiness of our model’s outputs. Rooted in cooperative game 
theory, SHAP values offer a method to attribute the difference between 
the prediction for a specific instance and the average prediction to 
individual features. SHAP values adhere to local accuracy, missing-
ness, and consistency, ensuring reliable and interpretable explanations. 
Mathematically, for a model 𝑓 and an instance 𝑥, the SHAP value 𝜙𝑖
for feature 𝑖 is calculated as:
𝜙𝑖 =

∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)]

where:

• 𝑁 is the set of all features.
• 𝑆 is a subset of 𝑁 that excludes feature 𝑖.
• 𝑓 (𝑆) is the prediction for the instance with only the features in 
𝑆.

This formula calculates the average marginal contribution of feature 
𝑖 across all possible feature subsets, ensuring fair and comprehensive 
feature importance attribution.

To facilitate SHAP analysis, predictions from the ensemble of PTrees 
were encapsulated in a wrapper compatible with the SHAP framework. 
A background dataset was generated using k-means clustering on the 
training data to provide a reference point for SHAP value calculations. 
SHAP values were computed for a subset of the test data using the 
Kernel Explainer to balance computational efficiency and accuracy 

4. Case studies

The proposed framework addresses several limitations of traditional 
prediction models by offering a multifaceted approach for clinicians. It 
facilitates the identification of causal relationships between variables, 
enables predictive modelling, and supports the exploration of potential 
interventions and counterfactual scenarios. This combination provides 
clinicians with a more comprehensive understanding of the data while 
acknowledging the inherent challenges of causal analysis.

We evaluated the framework using multiple real-world healthcare 
datasets to assess its applicability and generalisability across diverse 
clinical contexts. The first dataset was MIMIC-IV, a collection of elec-
tronic health records from critical care settings, where the objective 
was to predict the length of stay in the Intensive Care Unit (ICU). 
The second dataset was the Framingham Heart Study, which focuses 
on cardiovascular disease (CVD) and its risk factors, trends over time, 
and familial patterns. Finally, the Diabetes dataset from BRFSS-2015 
was used to analyse risk factors and predict the likelihood of diabetes 
onset. These case studies were intentionally selected to span distinct 
domains, acute care, chronic cardiovascular conditions, and metabolic 
disease, demonstrating the framework’s robustness and generalisability 
beyond a single clinical setting. This diversity enables an assessment of 
PCF’s adaptability to varied healthcare challenges and strengthens its 
relevance for broader medical applications.

To ensure valid causal inference, the PCF framework operates under 
three foundational assumptions. First, it assumes causal sufficiency, 
that is, relevant confounders affecting both treatment and outcome 
are either directly observed or adequately captured within the CBN. 
Second, the framework relies on the faithfulness assumption, which 
posits that observed statistical dependencies in the data reflect the 
underlying causal structure. Third, it assumes that the CBN itself is a 
valid representation of the data-generating process, whether specified 
by experts or learned from data. These assumptions are necessary for 
the PCF model to support interpretable interventional and counterfac-
tual analyses that aim to capture plausible causal mechanisms rather 
than spurious associations.
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Algorithm 1 Create Tree from Data
Require: 𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒: Node, 𝑑𝑎𝑡𝑎: DataFrame, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑜𝑟𝑑𝑒𝑟: List, 

𝑙𝑒𝑣𝑒𝑙: Integer, 𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: Float
Ensure: Root node of the decision tree (𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒)
1: function create_tree_from_data(𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒, 𝑑𝑎𝑡𝑎, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑜𝑟𝑑𝑒𝑟, 

𝑙𝑒𝑣𝑒𝑙, 𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
2:  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑜𝑟𝑑𝑒𝑟[0]
3:  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒]
4:  𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒𝑠 ← empty list
5:  for 𝑣𝑎𝑙 in unique values of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑎𝑡𝑎 do
6:  Create class node with ID, level, statements, and no children
7:  Append class node to 𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒𝑠
8:  end for
9:  𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← total number of samples in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑎𝑡𝑎
10:  for each 𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒 and 𝑣𝑎𝑙 in 𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒𝑠 do
11:  𝑖𝑠_𝑟𝑜𝑜𝑡 ← Check if 𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒 is root
12:  𝑣𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 ← Count of 𝑣𝑎𝑙 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑎𝑡𝑎
13:  if 𝑖𝑠_𝑟𝑜𝑜𝑡 then
14:  Calculate transition probability based on occurrences
15:  if 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏 ≥ 𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
16:  Insert transition probability into 𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒
17:  end if
18:  else
19:  Calculate transition probability based on parent’s state
20:  if 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏 ≥ 𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
21:  Insert transition probability into 𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒
22:  end if
23:  end if
24:  end for
25:  for each 𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒 and 𝑣𝑎𝑙 in 𝑐𝑙𝑎𝑠𝑠_𝑛𝑜𝑑𝑒𝑠 do
26:  Get next data for 𝑣𝑎𝑙
27:  Get next variable order
28:  if next variable order is not empty then
29:  Recursively call 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑒𝑒_𝑓𝑟𝑜𝑚_𝑑𝑎𝑡𝑎
30:  end if
31:  end for
32:  return 𝑓𝑎𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒
33: end function

Algorithm 2 Conditional Probability Calculation
1: function conditionalProbability(𝑠𝑒𝑙𝑓 ,input_condition)
2:  if input_condition is empty then
3:  return 0.0
4:  end if
5:  cut_disease← self.prop(’target_variable’)
6:  combined_cut← None
7:  for all (var, val) in input_condition do
8:  cut← self.prop(var + ’ = ’ + val)
9:  if combined_cut is None then
10:  combined_cut← cut
11:  else
12:  combined_cut← combined_cut ∧ cut
13:  end if
14:  end for
15:  disease_see ← self.see(combined_cut)
16:  probability ← disease_see.prob(cut_disease)
17:  return probability
18: end function

4.1. Length of stay in ICU case study

The intensive care unit (ICU) stands as a vital line of defence for crit-
ically ill patients, offering specialised care to prevent deterioration from 
8 
severe illness or injury [49,50]. However, the ever-increasing demand 
for ICU beds threatens this critical service. The imbalance between 
ICU capacity and patient needs has significant consequences for patient 
outcomes, public health, and even socio-economic factors [51,52]. 
Therefore, optimising ICU resource allocation and planning for future 
needs necessitates interpretable models that facilitate counterfactual 
analysis for informed decision-making, ultimately ensuring optimal 
care for critically ill patients.

4.1.1. MIMIC-IV
In this study, we use the MIMIC-IV version 2.2 database [53], 

which includes patients admitted to the BETH Israel Deaconess Medical 
Center during the period 2008–2019. The data contains multiple di-
mensions, from administrative data to laboratory results and diagnoses. 
We employed preprocessing techniques as described in [54] to ensure 
consistency and comparability with existing literature. The cohort in-
cluded all patients with at least one ICU visit. However, certain subsets 
of patients were excluded: those who died during their ICU stay, those 
who returned to the ICU within 48 h of discharge, those with an LOS 
greater than 21 days, and those with an LOS of less than one day.

The exclusion of patients who returned to the ICU within 48 h 
was motivated by the focus of this analysis on understanding factors 
influencing the initial ICU stay and its length. Rapid readmissions often 
reflect distinct cases with underlying complexities such as incomplete 
recovery or premature discharge, which could introduce confounding 
factors. Similarly, patients with extremely long LOS (greater than 21 
days) were excluded to avoid the influence of outliers, which could 
disproportionately impact model performance. Patients with an LOS of 
less than one day were excluded because the data collected during the 
first 24 h was used for modelling, making such cases incomplete for 
analysis. These exclusions ensure that the cohort is representative of 
the broader ICU patient population, allowing for more generalisable 
findings. Future work could investigate the effects of these exclusions 
on model performance by reintroducing these subsets for a comparative 
analysis.

To transform the length-of-stay task into a classification problem, 
we categorised LOS into clinically meaningful groups: short stays (1–4 
days) and long stays (greater than 4 days). This categorisation was 
guided by the 75th percentile of LOS distribution (Q3 = 4.0) in the 
dataset, as described in [54], and reflects thresholds commonly used in 
critical care practice.

4.2. Heart disease case study

Despite significant advancements in healthcare, CHD remains a 
leading cause of global mortality, accounting for 17.9 million deaths in 
2019 as reported by the World Health Organization (WHO) [55]. While 
accurate prediction of future risk is undeniably crucial, medical experts 
increasingly recognise the limitations of solely relying on such prog-
nostic models. To optimise patient care, a deeper understanding of the 
factors influencing individual susceptibility to CHD is paramount. This 
necessitates the development of intelligent systems that can not only 
predict future risk but also explore the potential impact of interventions 
and counterfactual analysis.

4.2.1. Framingham data
In this study, we use the Framingham heart disease dataset includes 

over 4238 records and 15 attributes [56]. The goal of the dataset is 
to predict whether the patient has 10-year risk of future CHD. The 
initial preprocessing steps involved converting the numerical variables 
in the dataset into categorical variables. Given that the variables pertain 
to health-related data, specific ranges were meticulously considered 
during this conversion process. Numerical data representing health 
metrics such as blood pressure, cholesterol levels, or body mass index 
were categorised into clinically relevant ranges indicative of different 
health conditions or risk levels. By transforming numerical data into 
categorical form based on meaningful health-related ranges, the dataset 
became better suited for subsequent analysis and interpretation within 
the context of healthcare applications.
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4.3. Diabetes case study

Despite the existence of preventative measures, diabetes remains a 
significant global health burden [57]. Characterised spectrum of devas-
tating complications, it necessitates a multifaceted approach that tran-
scends traditional risk prediction. While accurate future risk prediction 
remains valuable for preventative strategies, a deeper understanding of 
modifiable factors influencing individual susceptibility is paramount, 
especially considering the potential for early intervention to reduce 
diabetes-related mortality [58]. This necessitates the development of 
robust computational models capable of not only predicting future 
risk but also exploring the potential impact of various interventions 
through counterfactual analysis. Such models could empower clinicians 
by enabling the exploration of ‘‘what-if’’ scenarios: investigating how a 
patient’s risk profile might change with different lifestyle modifications 
or therapeutic interventions, ultimately leading to tailored preventative 
strategies and optimised patient care.

4.3.1. Diabetes data
Data was obtained from the Behavioural Risk Factor Surveillance 

System (BRFSS), which is the primary system of health-related tele-
phone surveys that collect state data on risk behaviours, chronic 
health conditions, and use of preventative treatments amongst U.S. 
residents [59]. The survey started in 1984 and currently performs 
over 400,000 adult interviews each year, making it the world’s largest 
continuously conducted health survey system. This survey data pro-
vides a dataset that could be used to analyse and forecast diabetes risk 
variables. We utilised the BRFSS-2015 dataset, which included 253,680 
health assessments.

5. Evaluation and discussion of the results

The evaluation process begins in Section 5.1 with an analysis of the 
varying outcomes derived from the sensitivity analysis. In Section 5.2, 
we assess the predictive performance of the PCF model, comparing 
it against a range of benchmark models, including both interpretable 
and non-interpretable methods, across all three datasets. Additionally, 
this section explores model interpretability using SHAP. Section 5.3 
then examines the effects of potential interventions through interven-
tional analysis. Lastly, Section 5.4 investigates counterfactual analysis 
to provide further insights.

5.1. Interpretation of sensitivity analysis

Sensitivity analysis is a crucial step in our framework to under-
stand the influence of various parameters on the target variable. The 
diverse outcomes from our sensitivity analysis provide valuable insights 
into the multifaceted factors influencing LOS, CHD, and Diabetes, as 
depicted in Fig.  2. The colour of the bars indicates the direction of 
change in the target state, with red representing a negative impact 
and green representing a positive impact. For LOS, factors such as 
first care unit admission, patient’s verbal communication ability, and 
specific diagnoses (e.g., Respiratory system, Circulatory system) show 
high sensitivity, indicating their collective substantial impact on LOS. 
In the context of CHD, the absence of diabetes and hypertension was 
found to significantly reduce the risk. Additionally, other significant 
factors include being a non-smoker with normal systolic blood pressure 
and specific education levels. These findings highlight the combined 
effect of lifestyle and socio-economic factors on CHD risk. For Diabetes, 
the sensitivity analysis demonstrates the complex interplay between 
hypertension, cholesterol levels, BMI, and other health indicators. The 
figure reveals that individuals with hypertension have the highest 
sensitivity value, indicating that high blood pressure significantly in-
creases the risk of developing diabetes. Additionally, other influential 
factors include high cholesterol, elevated BMI, and the presence of 
heart disease. These findings underscore the complex interplay of mul-
tiple health conditions in determining diabetes risk, highlighting the 
necessity of addressing various health parameters simultaneously to 
effectively manage and prevent diabetes.
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Table 1
Results using SMOTE for MIMIC-IV.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 Ensemble Algorithms
 GB 73.71 77.96 57.91 67.94  
 XGB 73.92 79.14 54.54 66.84  
 Adaboost 75.07 79.78 57.57 68.67  
 RF 75.64 83.22 47.47 65.35  
 PCF 73.21 77.69 56.56 67.13  
 Other Algorithms
 SVM 73.07 76.42 60.60 68.51  
 KNN 71.14 77.87 46.12 62.00  
 Interpretable Algorithms
 DT 79.42 88.84 44.44 66.64  
 LR 70.14 73.70 56.90 65.30  
 PTree 80.29 91.11 40.06 65.59  

5.2. Prediction

This section evaluates the predictive capabilities of PCF by apply-
ing it to three clinical datasets. We conduct a comprehensive assess-
ment of its performance by juxtaposing its outcomes against those 
attained by established benchmark methodologies, comprising Logis-
tic Regression (LR) [60], Decision Tree (DT) [61], Random Forest 
(RF) [62], Support Vector Machine (SVM) [63], K-Nearest Neighbours 
(KNN) [64,65], Gradient Boosting (GB) [66,67], eXtreme Gradient 
Boosting (XGB) [68], and Adaptive Boosting (Adaboost) [69]. Note-
worthy among these benchmarks are LR, DT, and KNN, esteemed for 
their interpretability, which facilitates the elucidation of their decision-
making mechanisms. Additionally, given the ensemble nature of our 
approach involving PTrees, a comparison with ensemble techniques 
such as GB, XGB, Adaboost and RF is warranted.

The dataset undergoes stratification-based partitioning into training 
and testing subsets to ensure their representativeness. Subsequently, the 
performance of each model is assessed utilising diverse metrics such as 
accuracy, specificity, sensitivity, and the Area Under the Receiver Oper-
ating Characteristic Curve (AUC–ROC). Predictions are made based on 
a default threshold, with the potential for adjustment in scenarios char-
acterised by resource constraints, thereby prioritising cases of utmost 
urgency.

The performance metrics for each dataset are presented in Tables 
1, 2 and 3. It is well-documented that class imbalance within datasets 
can significantly impact the evaluation of machine learning algorithms. 
To mitigate this potential bias and ensure a fair comparison across 
all models, various techniques for handling class imbalance were em-
ployed. In the case of the MIMIC-IV and Framingham heart datasets, the 
SMOTE (Synthetic Minority Over-Sampling Technique) [70] oversam-
pling technique yielded superior results. Conversely, ADASYN (Adap-
tive Synthetic Minority Oversampling Technique) [71] demonstrated 
the best performance when applied to the diabetes dataset. This finding 
suggests that the most effective class imbalance handling technique 
may vary depending on the specific characteristics of the data and the 
machine learning models being evaluated. 

Tables  1, 2, and 3 present the performance evaluation of the PCF 
framework compared to benchmark methodologies across the three 
datasets. Notably, PCF achieves results that are largely comparable to 
established ensemble-based and interpretable models, balancing speci-
ficity and sensitivity while maintaining competitive predictive accu-
racy.

On the MIMIC-IV dataset, PCF achieves an accuracy of 73.21% 
and an AUC–ROC of 67.13%, performing similarly to ensemble-based 
methods such as Gradient Boosting (73.71% accuracy) and Adaboost 
(75.07% accuracy). Although DT achieves a higher accuracy of 79.42%, 
PCF demonstrates better sensitivity (56.56%) than simpler models like 
KNN, which achieves only 46.12%. Among ensemble methods, PCF 
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Fig. 2. Sensitivity Analysis for LOS, Diabetes, and Framingham datasets.
Table 2
Results using SMOTE for Framingham heart data.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 Ensemble Algorithms
 GB 63.08 64.81 53.48 59.15  
 XGB 63.91 68.01 41.08 54.54  
 Adaboost 66.03 69.26 48.06 58.66  
 RF 67.09 72.73 35.65 54.19  
 PCF 66.98 69.68 51.93 60.80  
 Other Algorithms
 SVM 69.22 74.26 41.08 57.67  
 KNN 76.76 87.62 16.27 51.95  
 Interpretable Algorithms
 DT 64.03 66.06 52.71 59.38  
 LR 61.55 63.14 52.71 57.92  
 PTree 65.57 70.23 39.53 54.88  

Table 3
Results using ADASYN for diabetes data.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 Ensemble Algorithms
 GB 70.78 70.02 75.66 72.84  
 XGB 69.71 71.34 59.25 65.30  
 Adaboost 71.35 71.09 73.01 72.05  
 RF 73.42 77.45 47.61 62.53  
 PCF 73.64 73.41 75.13 74.27  
 Other Algorithms
 SVM 69.71 68.62 76.71 72.67  
 KNN 79.00 85.86 35.26 60.56  
 Interpretable Algorithms
 DT 62.92 60.19 80.42 70.31  
 LR 70.71 70.27 73.54 71.90  
 PTree 72.36 71.12 52.82 61.97  

effectively balances specificity and sensitivity, avoiding extremes like 
RF, which prioritises specificity at the expense of sensitivity.

On the Framingham dataset, PCF achieves an AUC–ROC of 60.80%, 
outperforming most ensemble methods while maintaining competi-
tive accuracy at 66.98%, compared to RF (67.09%) and Adaboost 
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(66.03%). Although KNN achieves the highest accuracy at 76.76%, 
its significantly lower sensitivity (16.27%) highlights its limitations 
in handling balanced classification scenarios. PCF’s balanced trade-off 
between specificity and sensitivity makes it particularly well-suited for 
datasets requiring nuanced predictions.

On the diabetes dataset, PCF achieves the highest AUC–ROC among 
all models (74.27%) and an accuracy of 73.64%, comparable to ensem-
ble methods such as RF (73.42%) and higher than DT (62.92%). While 
KNN achieves the highest accuracy (79.00%), its specificity (85.86%) 
comes at the cost of sensitivity (35.26%). PCF balances both met-
rics effectively, achieving 73.41% specificity and 75.13% sensitivity, 
demonstrating its robustness across diverse datasets.

To confirm that PCF’s observed performance was not the result of 
random variation, we conducted a non-parametric permutation test 
with 1000 iterations. In all datasets, the test yielded 𝑝 < 0.001, indi-
cating that PCF’s accuracy is statistically significant and highly unlikely 
to have occurred under random label assignments. This strengthens the 
validity of the reported results and supports the reliability of PCF as a 
predictive model.

Overall, while PCF does not consistently outperform simpler models 
such as DT or KNN in terms of accuracy, it offers balanced perfor-
mance across key metrics and demonstrates robustness across datasets. 
Its ability to maintain competitive predictive performance while also 
uncovering causal relationships and supporting intervention modelling 
sets it apart from purely predictive methodologies.

5.2.1. Interpretability with SHAP
The SHAP plot, shown in Fig.  3, interprets the influence of each 

feature on predictions for LOS, Coronary Heart Disease (CHD), and 
Diabetes. For LOS, features such as creatinine, first care unit, and 
urea nitrogen have high SHAP values, indicating their strong influ-
ence on prolonged ICU stays. The Glasgow Coma Scale (glc_verbal) 
score and elevated white blood cells, along with specific diagnoses 
(e.g., respiratory and circulatory system issues), also significantly im-
pact LOS predictions. In CHD predictions, critical features include 
current smoking status, systolic blood pressure (sysBP), and glucose 
levels, which are known risk factors for heart disease. High cholesterol 
(totChol), the presence of diabetes, socio-economic factors, and lifestyle 
choices such as education level and physical activity further influence 
CHD risk. For Diabetes, key contributors include high blood pressure 
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Fig. 3. SHAP plot showing feature impacts on predictions for LOS, CHD, and Diabetes.
(HighBP), elevated BMI, and high cholesterol levels, which are essential 
components of metabolic syndrome. General health status (GenHlth) 
and difficulty walking (DiffWalk) also play significant roles, along 
with the presence of heart disease and levels of physical activity. The 
SHAP plots reveal that LOS is heavily influenced by clinical indica-
tors related to critical health conditions and specific ICU units. CHD 
risk is predominantly affected by cardiovascular risk factors, lifestyle 
choices, and socio-economic factors, while Diabetes risk is determined 
by metabolic health markers, overall health, and physical activity. 
These insights validate the results from sensitivity analysis and provide 
a detailed understanding of feature contributions, helping identify key 
areas for intervention and improve clinical decision-making processes 
by emphasising the most impactful factors for each health condition. 
By combining sensitivity analysis for understanding variable influence 
within the CBN and SHAP values for detailed prediction explanations, 
our framework ensures robust causal inference and clear, actionable 
insights for clinical decision-making.

5.3. Intervention

In the context of PCF, intervention involves the strategic modifica-
tion of transition probabilities to ensure a specific event occurs with 
certainty (probability of 1). This approach allows for the exploration 
of conditional probabilities represented as 𝑃 (𝐴 ∣ 𝑑𝑜(𝐵)), indicating 
the probability of event 𝐴 occurring given that event 𝐵 is enforced. 
Conceptually, an intervention reflects an externally imposed change, 
such as adjusting a patient’s physiological or treatment variable, and 
estimates the resulting shift in outcome probabilities. For instance, 
𝑃 (recovery ∣ 𝑑𝑜(early discharge)) represents the likelihood of recovery 
if early discharge were implemented, irrespective of factors that would 
normally influence discharge timing.

Unlike in CBNs, interventions in PCF are more general and do not 
require unique value assignments to manipulated random variables. 
Instead, the impact of an intervention depends on a critical set, defined 
as the minimal subset of nodes or branches in the probability tree 
whose transition probabilities must be modified to make the target 
event occur with certainty. In practical terms, the critical set identifies 
precisely where in the tree the intervention must act to achieve the 
desired causal outcome, while leaving unaffected branches unchanged.

Formally, let   denote a probability tree over variables  , and let 
𝐸 ⊆  be the event to be enforced. The critical set  ⊂   is defined 
as the minimal collection of decision contexts at which modifying 
transition probabilities is sufficient to ensure 𝑃 (𝐸) = 1 under the 
intervened tree. The intervention proceeds as follows: (i) traverse the 
tree to locate all branches where 𝐸 is not satisfied; (ii) identify the 
minimal set  of nodes where changes can block these violating paths; 
(iii) set the transition probabilities leading to incompatible paths to 
zero; and (iv) renormalise the remaining transitions locally to preserve 
probabilistic consistency.
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All simulated interventions are restricted to clinically meaningful 
and actionable modifications. Only modifiable variables, such as heart 
rate, respiration rate, or laboratory measures, are considered. This 
ensures that the scenarios produced by PCF correspond to interventions 
that are both realistic and interpretable within real-world healthcare 
contexts.

MIMIC-IV:. To elucidate the impact of key physiological parameters 
on ICU length of stay (LOS), an interventional analysis was conducted. 
Eight critical factors were examined to assess the PCF model’s ability to 
replicate established causal relationships. The primary objective was to 
assess PCFs ability to replicate established causal relationships between 
these parameters and LOS.Box plots (Fig.  4) were used to visualise the 
distribution of los across different intervention groups. In these plots, 
red signifies an increased probability of los exceeding 4 days (los = 1), 
while green signifies a decrease.

Existing literature establishes a link between bradycardia (heart rate 
≤ 60 beats per minute) and extended ICU stays due to underlying 
medical conditions requiring further investigation or treatment [72]. To 
explore this relationship within our model, interventional analysis was 
conducted on heart rate. Simulating bradycardia (𝑑𝑜(ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 = 0)) 
significantly increased the likelihood of extended ICU stays (𝑙𝑜𝑠 = 1), 
consistent with established medical knowledge. However, the relation-
ship between heart rate and length of stay is more complex. Similar 
trends were observed for heart rates above 60 bpm (𝑑𝑜(ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 = 1)), 
though to a lesser extent, and a slight decrease in 𝑙𝑜𝑠 = 1 was noted for 
even higher heart rates (𝑑𝑜(ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 = 2)). This highlights the need 
to consider multiple physiological and clinical variables beyond heart 
rate.

In literature, it is established that low levels of urea nitrogen (UN) 
are not typically concerning, often associated with low protein in-
take [73]. Similar findings are observed in our model, where ma-
nipulating UN levels to be low (𝑑𝑜(𝑈𝑟𝑒𝑎_𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 0)) results in a 
decrease in the proportion of patients with extended ICU stays (𝑙𝑜𝑠 = 1). 
However, as the intervention values increase (𝑑𝑜(𝑈𝑟𝑒𝑎_𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 1)
and 𝑑𝑜(𝑈𝑟𝑒𝑎_𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 2)), a trend emerges indicating a potential rise 
in the probability of 𝑙𝑜𝑠 = 1. While this increase is subtle, it is visually 
detectable by the red colour in the box plots.

Literature indicates that elevated Red Cell Distribution Width
(RDW) is closely associated with increased risk of cardiovascular mor-
bidity and mortality in patients with previous myocardial infarction, 
potentially leading to prolonged hospital stays [74]. Our model’s inter-
ventional analysis, where RDW is manipulated to be high (𝑑𝑜(𝑅𝐷𝑊 =
2)), shows a corresponding increase in the percentage of patients with 
extended ICU stays (𝑙𝑜𝑠 = 1), consistent with existing literature.

Lower levels of creatinine are often related to muscle loss and severe 
liver disease. Patients experiencing significant muscle mass loss in the 
first week of ICU admission are at higher risk of extended stays [75]. 
This aligns with our findings, where intervening to set low creatinine 
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Fig. 4. Probability change of los given interventions on heart_rate, Urea_Nitrogen (UN), RDW, Creatinine, Glucose, temperature (temp), saturation (sat), and 
respiration rate (resp).
levels (𝑑𝑜(𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 = 0)) notably increases the likelihood of extended 
ICU stays (𝑙𝑜𝑠 = 1).

High respiration rate, indicative of tachypnea in adults, is charac-
terised by a respiratory rate exceeding 20 breaths per minute and often 
requires further assessment, leading to prolonged hospital stays [76]. In 
our model, intervening to elevate the respiration rate (𝑑𝑜(𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 =
2)) resulted in an increased probability of extended ICU stays (𝑙𝑜𝑠 = 1).

Fever is a common issue in ICU patients and often necessitates diag-
nostic tests and procedures, which significantly prolongs the stay [77]. 
Consistent with this, our model shows that intervening to indicate mild 
fever (𝑑𝑜(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 1)) also leads to an elevated probability of 
extended ICU stays (𝑙𝑜𝑠 = 1).

Inadequate oxygen saturation (𝑑𝑜(𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 1)) has a varied effect 
on 𝑙𝑜𝑠 = 1, while other saturation levels show no discernible impact. 
Manipulating glucose levels reveals an inverse response, suggesting 
these variables indirectly influence LOS through intermediary factors 
rather than exerting a direct effect.
Framingham heart data:. This section explores the impact of various 
health factors on CHD risk through intervention analysis, aiming to 
assess the PCF’s ability to replicate established causal relationships 
between these parameters and CHD. As illustrated in 5, our findings 
underscore significant alterations in 𝑃 (𝑇 𝑒𝑛𝑌 𝑒𝑎𝑟𝐶𝐻𝐷 = 1) across dif-
ferent interventions, shedding light on the intricate interplay between 
these health factors and CHD risk.

Existing literature highlights both systolic and diastolic hyperten-
sion as independent risk factors for adverse cardiovascular events [78]. 
Our analysis corroborates this, demonstrating that interventions on 
systolic blood pressure, such as 𝑑𝑜(𝑠𝑦𝑠𝐵𝑃 = 3), result in an increased 
probability of 𝐶𝐻𝐷 = 1. Similarly, interventions on diastolic blood
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pressure (𝑑𝑜(𝑑𝑖𝑎𝐵𝑃 = 1), 𝑑𝑜(𝑑𝑖𝑎𝐵𝑃 = 2) and 𝑑𝑜(𝑑𝑖𝑎𝐵𝑃 = 3)) also 
heighten the likelihood of 𝐶𝐻𝐷 = 1, reinforcing the significant impact 
of blood pressure levels on cardiovascular health.

Additionally, glucose metabolism plays a critical role in cardio-
vascular health, as deviations from normal glucose levels can lead to 
adverse outcomes [79]. Our model confirms this relationship, showing 
that interventions altering glucose levels, such as 𝑑𝑜(𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = 0) and 
𝑑𝑜(𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = 2), significantly increase the probability of 𝐶𝐻𝐷 = 1. 
These findings underscore the critical role that glucose regulation plays 
in cardiovascular risk management.

Raised total cholesterol levels are well-documented as a significant 
risk factor for coronary heart disease (CHD) [80]. In our model, in-
terventions on total cholesterol (𝑑𝑜(𝑡𝑜𝑡𝐶ℎ𝑜𝑙 = 1) i.e levels ≥ 200) 
were found to increase the probability of 𝐶𝐻𝐷 = 1, reinforcing the 
established link between elevated cholesterol and heightened CHD risk.

Literature highlights that asymptomatic bradycardia may influence 
heart disease risk due to underlying autonomic or cardiovascular 
issues [81]. Our intervention analysis, which simulates bradycardia 
through interventions on heart rate (𝑑𝑜(ℎ𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 = 0)), reveals a 
marked increase in the probability of 𝐶𝐻𝐷 = 1.

Smoking has been highlighted as a leading risk factor for heart 
disease [82]. Our model’s interventions demonstrate that smoking 6–10 
cigarettes per day (𝑑𝑜(𝑐𝑖𝑔𝑠𝑃 𝑒𝑟𝐷𝑎𝑦 = 2)) and more than 11 cigarettes 
per day (𝑑𝑜(𝑐𝑖𝑔𝑠𝑃 𝑒𝑟𝐷𝑎𝑦 = 3)) significantly increase the probability of 
𝐶𝐻𝐷 = 1. These findings underscore the substantial impact of smoking 
on coronary heart disease risk.

Research indicates that higher education levels can lead to sub-
stantial health benefits [83]. Our model corroborates these findings, 
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Fig. 5. Probability change of TenYearCHD given interventions on sysBP, diaBP, totChol, BMI, education, glucose, heartRate and cigsPerDay.
demonstrating that higher levels of education significantly decrease the 
probability of 𝐶𝐻𝐷 = 1.

The relationship between BMI and CHD is often characterised as 
inconsistent and complex [84]. Our findings support this observa-
tion, as BMI interventions did not produce interpretable results. This 
ambiguity may be attributed to the intricate interplay of metabolic 
factors that extend beyond body mass alone, suggesting that BMI might 
not be a straightforward predictor of CHD risk. The lack of a clear 
relationship underscores the need for a more nuanced understanding 
of how metabolic factors contribute to CHD.
Diabetes:. This section explores the influence of various health factors 
on the likelihood of developing diabetes through intervention analysis. 
As depicted in Fig.  6, illustrates the significant changes in diabetes risk 
(𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1)) following interventions on the selected variables.

Hypertension and hyperlipidemia are well-established predictors 
of diabetes risk, as highlighted in existing literature [85,86]. Our 
analysis confirms this relationship, showing that high blood pressure 
(𝑑𝑜(𝐻𝑖𝑔ℎ𝐵𝑃 = 1)) increases diabetes probability, while its absence 
(𝑑𝑜(𝐻𝑖𝑔ℎ𝐵𝑃 = 0)) decreases the risk. Similarly, elevated cholesterol 
levels (𝑑𝑜(𝐻𝑖𝑔ℎ𝐶ℎ𝑜𝑙 = 1)) are linked to a higher likelihood of diabetes, 
whereas normal cholesterol levels (𝑑𝑜(𝐻𝑖𝑔ℎ𝐶ℎ𝑜𝑙 = 0)) reduce the risk.

Body Mass Index (BMI) is another significant risk factor for di-
abetes [87]. Our findings indicate that maintaining a normal BMI 
(𝑑𝑜(𝐵𝑀𝐼 = 0)) lowers the probability of diabetes, while a BMI of 40 or 
more (𝑑𝑜(𝐵𝑀𝐼 = 2)) substantially raises this probability. This suggests 
that keeping a BMI between 0–24 mitigates diabetes risk, whereas 
higher BMI levels considerably elevate it.

Maintaining a healthy lifestyle is crucial for diabetes prevention
[88]. Our analysis demonstrates that individuals with excellent general 
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health (𝑑𝑜(𝐺𝑒𝑛𝐻𝑙𝑡ℎ = 1)) have a lower risk of developing diabetes com-
pared to those in good (𝑑𝑜(𝐺𝑒𝑛𝐻𝑙𝑡ℎ = 2)) or poor health (𝑑𝑜(𝐺𝑒𝑛𝐻𝑙𝑡ℎ =
3)). Additionally, regular physical activity (𝑑𝑜(𝑃ℎ𝑦𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 1)) 
significantly reduces diabetes risk compared to a sedentary lifestyle 
(𝑑𝑜(𝑃ℎ𝑦𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 0)).

Education also plays a positive role in diabetes management and 
complication prevention [89]. Our results indicate that individuals with 
limited education (𝑑𝑜(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 = 1)) face a higher diabetes risk, while 
those with some secondary education (𝑑𝑜(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 = 2)) show mixed 
outcomes. Notably, higher education levels (𝑑𝑜(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 = 3)) are 
significantly associated with reduced diabetes risk.

The link between diabetes and heart disease is well-documented
[90]. Our analysis supports this connection, as the absence of heart 
disease (𝑑𝑜(𝐻𝑒𝑎𝑟𝑡𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 0)) decreases diabetes risk, whereas its 
presence (𝑑𝑜(𝐻𝑒𝑎𝑟𝑡𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 1)) significantly increases it. This finding 
underscores the interconnected nature of these conditions, highlighting 
the need for integrated healthcare strategies.

To establish the empirical relevance of the selected intervention 
variables, we performed Chi-Square tests of independence with
Benjamini–Hochberg false discovery rate (FDR) correction across all 
three datasets. All variable–outcome pairs exhibited statistically signif-
icant associations after multiple comparison adjustment (𝑞 < 0.001).

In the Framingham dataset, traditional cardiovascular risk factors, 
including blood pressure, cholesterol, glucose, smoking, and body mass 
index (BMI), were strongly associated with CHD risk (𝜒2 = 16.9–149.1). 
In the MIMIC-IV critical care dataset, physiological markers such as 
vital signs and laboratory values showed robust associations with ICU 
length of stay (𝜒2 = 62.1–360.3). The Diabetes dataset similarly con-
firmed well-established relationships between metabolic factors, health 
behaviours, and diabetes status (𝜒2 = 55.5–522.6).
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Fig. 6. Probability change of Diabetes given interventions on sysBP, diaBP, totChol, BMI, education, glucose, heartRate and cigsPerDay.
These results validate the empirical grounding of our intervention 
variables across diverse clinical domains, reinforcing the theoretical 
and causal relevance of the PCF framework.

5.4. Counterfactuals

Counterfactuals are alternative scenarios or outcomes that could 
have occurred if certain events or variables had been different. In 
healthcare, they are used to ask questions such as what would have 
happened if a different course of action had been taken or if specific 
variables had changed. Counterfactual reasoning enables clinicians 
to explore the probabilities associated with an ‘‘alternate reality,’’ 
distinguishing between the indicative (events that actually occurred) 
and the subjunctive (events that could have occurred under different 
circumstances).

In this study, we investigate two types of counterfactual scenarios 
to assess the impact of clinician insights on our model, as described in 
Sections 5.4.1 and 5.4.2.

5.4.1. Reordering variables based on domain knowledge
We investigate the impact of modifying variable order within the 

PCF framework to illustrate its potential benefits as a proof of con-
cept, rather than an implementation of clinician-directed decisions. 
While the CBN provides a robust foundational structure, our intent 
is to demonstrate how the model could be enhanced by integrating 
clinician-informed causal relationships. The core principle of our model 
is adaptability; it combines empirical foundations provided by the CBN 
with potential clinical insights. While the CBN’s causal structure estab-
lishes the initial framework, we explore how clinician adjustments to 
the variable order might impact predictive precision. These adjustments 
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are permitted within this partial ordering, that is, reordering is allowed 
only among variables not causally linked in the DAG. This maintains the 
integrity of the underlying causal assumptions while enabling clinically 
meaningful refinements.

By granting clinicians the ability to adjust variable sequences, we 
create an inclusive environment where domain-specific knowledge can 
shape and refine the model’s architecture. This approach aims to bal-
ance the structured scaffolding provided by the CBN with the nuanced 
insights derived from clinical acumen, ultimately enriching the model’s 
interpretability and operational efficacy in real-world healthcare set-
tings. This fosters the exploration of counterfactual scenarios, assessing 
the impact of incorporating clinician insights on model performance 
and decision-making outcomes.

Soliciting specific feedback on variables, assumptions, and potential 
causal relationships enhances the interpretability, relevance, and trust-
worthiness of our model, ensuring alignment with clinical expertise 
and practice. Through this refinement, we navigate diverse scenarios 
or ‘‘what-if’’ queries related to the model’s operation under distinct 
conditions, including modifications of causal trajectories informed by 
clinical expertise.

Fig.  7 illustrates how large hospitals, equipped with extensive 
datasets, can develop CBNs to represent causal relationships and gen-
erate pre-trained PCF models. These models could then be shared 
with smaller hospitals to support knowledge transfer and collaborative 
decision-making. Realising this vision of a centralised causal knowledge 
repository, however, requires addressing several practical challenges. 
Data sharing must comply with strict privacy regulations (e.g., HIPAA, 
GDPR), effective exchange depends on standardisation of clinical data 
across institutions, and strong governance is needed to ensure that 
shared models remain transparent, validated, and regularly updated. 
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Fig. 7. The process of developing and sharing pre-trained PCFs by large hospitals with extensive datasets. The feedback loop illustrates how re-ordering variables 
integrates clinical insights into the Centralised CBN, enhancing collaborative decision-making in healthcare.
Table 4
Results using SMOTE for MIMIC-IV after changing the order.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 PTree 80.29 91.11 40.06 65.59  
 PCF 72.43 78.33 50.50 64.41  

While these barriers are substantial, advances in federated learning and 
privacy-preserving computation provide potential pathways towards 
implementation.

MIMIC-IV:. The initial variable order provided by the CBN positioned 
‘‘Diagnosis_2’’ earlier in the sequence, suggesting its early influence 
on the outcome variable. However, the counterfactual adjustment hy-
pothesised that strategically reordering the variables might enhance 
the model’s capacity to learn causal relationships and predict los more 
accurately. This adjustment reflected the potential causal flow where 
‘‘Diagnosis_2’’ is informed by preceding laboratory tests. Therefore, we 
reordered the variables to place ‘‘Diagnosis_2’’ later in the sequence, 
just before the outcome variable (los).

Table  4 summarises the performance of the PCF and PTree methods 
following the variable order change. The table reveals that while the 
rearrangement did not alter the accuracy of the PTree model, it resulted 
in a slight decrease in PCF performance. This outcome might be at-
tributed to the sensitivity of the PCF model to variable order, as it relies 
on an intricate interplay of causality among variables. The reordering 
may have disrupted previously established dependencies, highlighting 
the complex interactions inherent in the data. Such changes underline 
the importance of carefully considering the sequence of variables in 
models sensitive to causal relationships. 

Framingham heart data:. The original variable order provided by the 
CBN included ‘BPMeds’, ‘prevalentHyp’, ‘heartRate’, ‘prevalentStroke’, 
‘diabetes’, ‘sysBP’, ‘totChol’, ‘glucose’, ‘diaBP’, ‘BMI’, ‘education’, ‘cur-
rentSmoker’, ‘cigsPerDay’, and ‘TenYearCHD’. Subsequently, a coun-
terfactual adjustment was made, rearranging certain variables to cre-
ate a revised order: ‘BPMeds’, ‘prevalentHyp’, ‘diabetes’, ‘glucose’, 
‘heartRate’, ‘sysBP’, ‘diaBP’, ‘BMI’, ‘education’, ‘totChol’,
‘prevalentStroke’, ‘currentSmoker’, ‘cigsPerDay’, and ‘TenYearCHD’.
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Table 5
Results using SMOTE for framingham data after changing the order.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 PTree 64.98 69.40 40.31 54.85  
 PCF 66.39 69.12 51.16 60.14  

Table 6
Results using ADASYN for diabetes data after changing the order.
 Algorithm Accuracy Specificity Sensitivity AUC-ROC 
 PTree 73.29 78.93 38.14 58.54  
 PCF 73.71 75.45 62.88 69.17  

Table  5 presents the performance evaluation results for the PCF 
and PTree methods following the variable order modification. The 
analysis indicates almost similar performance for both the PCF and 
PTree method (slightly lower than original). This slight decrease can 
be attributed to the fact that the original order might have implicitly 
captured relevant relationships for CHD prediction better than the 
counterfactual order. 
Diabetes:. The original order of variables provided by the CBN was 
as follows: ‘HighBP’, ‘BMI’, ‘DiffWalk’, ‘GenHlth’, ‘PhysHlth’, ‘High-
Chol’, ‘MentHlth’, ‘Income’, ‘NoDocbcCost’, ‘AnyHealthcare’, ‘Educa-
tion’, ‘Smoker’, ‘PhysActivity’, ‘HeartDiseaseorAttack’, ‘Fruits’, ’Dia-
betes_binary’. The counterfactual order maintained the overall structure 
but changed the position of a few variables and the new order became: 
‘GenHlth’,‘BMI’,‘DiffWalk’,‘PhysHlth’, ‘PhysActivity’, ‘HighBP’, ‘High-
Chol’, ‘MentHlth’, ‘Education’, ‘Income’, ‘NoDocbcCost’,
‘AnyHealthcare’, ‘Smoker’, ‘HeartDiseaseorAttack’, ‘Fruits’,
’Diabetes_binary’.

Table  6 summarises the accuracy of PCF and PTree methods, after 
the change in variable order. As the table shows, reordering the vari-
ables led to an increase in the model accuracy for PCF as well as for 
PTree. However, AUC-ROC seems to have decreased in both. The results 
of these reordering experiments highlight the complex interplay be-
tween data-driven structure learning and expert-informed adjustments. 
In two of the three datasets, the original variable order derived from 
the CBN produced slightly better performance, suggesting that the data-
driven approach may capture subtle dependencies not easily articulated 
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through domain expertise alone. However, in the third dataset, the 
clinician-informed reordering led to performance gains, illustrating the 
potential value of expert insight when aligned with the data. These 
findings underscore the flexibility of the PCF framework while also 
pointing to the need for careful evaluation when integrating domain 
knowledge, especially in models sensitive to causal ordering.

5.4.2. Counterfactual statements for specific datasets
In addition to reordering variables, PCF can generate counterfactual 

statements by altering the values of specific variables within a patient’s 
observed history. This addresses retrospective ‘‘what if’’ questions, 
for example, how ICU length of stay (LOS) might have changed had 
a fever not occurred, while keeping the rest of the clinical context 
fixed. Unlike forward-looking interventions, which model hypothetical 
changes without reference to prior states, counterfactuals are anchored 
in the factual record. This allows PCF to provide patient-level insights 
that closely mirror real clinical scenarios.

Following Pearl’s framework, PCF implements counterfactual rea-
soning through a ‘‘twin network’’ representation: one copy of the 
model encodes the factual scenario, while a parallel copy encodes the 
counterfactual. This construction enables direct comparison between 
observed outcomes and their hypothetical alternatives, isolating the 
marginal contribution of the variable change under consideration.

Formally, PCF computes counterfactual probabilities of the form
𝑃 (𝑌𝐶 ∣ 𝑋 = 𝑥),

where 𝑌𝐶 denotes the outcome under the counterfactual assumption 
that variable 𝐶 takes a different value, and 𝑋 = 𝑥 represents the factual 
context. This notation follows Genewein et al. [6], where 𝑌𝐶 represents 
the subjunctive outcome under assumption 𝐶. It is equivalent to the 
more widely adopted notation 𝑌𝐶=𝑐 used in Pearl’s framework. Simu-
lations are restricted to clinically plausible changes, such as increasing 
heart rate from bradycardic to normal or restoring normothermia in 
febrile patients.

Building on this formalisation, PCF generates counterfactual prob-
ability trees by (1) conditioning on the observed evidence and (2) 
applying a structural intervention using the do() operator, which severs 
upstream dependencies and reinitialises downstream variables. Im-
plementation follows the procedure of Genewein et al. [6] via the 
function CF(𝑛, 𝑚, 𝛿), where 𝑛 and 𝑚 are the roots of the reference and 
factual trees, respectively, and 𝛿 is the min-cut set for the intervention. 
Recursive alignment with
ZIP(𝐴,𝐵) = {(𝑎𝑛, 𝑏𝑛)}𝑁𝑛=1
re-evaluates subpaths, allowing PCF to isolate the marginal effect of a 
single variable change.

To ensure tractability and interpretability, PCF employs a princi-
ple of feature sparsity. Counterfactuals are limited to a small set of 
clinically relevant variables, avoiding wholesale alterations across the 
dataset. Sparsity therefore plays a dual role, it reduces computational 
complexity and constrains the analysis to scenarios that are realistic 
and actionable. This perspective is consistent with the emerging field 
of counterfactual explainability [91], which emphasises the importance 
of limiting interventions to those that are both theoretically sound and 
practically implementable.

Guided by this principle, we selected features for each dataset 
based on their established presence in the literature and their recog-
nised clinical relevance. Incorporating such well-supported variables 
enhances the robustness and interpretability of our analyses, while 
ensuring that the resulting counterfactuals are meaningful in real-world 
decision-making contexts. Fig.  8 provides a visual illustration of this 
process.

As an illustration, consider a patient with hypotension and fever, 
predicted to have a 72% probability of prolonged ICU stay. A counter-
factual adjustment, setting temperature to a normal range
do(temperature = 0), reduced this estimate to 51%, suggesting that 
earlier fever control might have shortened the patient’s stay.
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MIMIC-IV:. This section explores the factors influencing the LOS in 
the ICU using counterfactual analysis. Specifically, we examine the 
conditional probability of a patient requiring an extended ICU stay 
(𝑙𝑜𝑠 = 1, i.e., more than 4 days). By employing counterfactual expla-
nations, we investigate hypothetical scenarios where certain vital signs 
or laboratory values are altered. This allows us to assess the impact 
of these changes on the probability of an extended ICU stay. Features 
were chosen based on their potential to yield valuable insights into the 
determinants of prolonged ICU stays.

(a) Heart Rate:  We analysed the effect of heart rate by comparing 
the baseline probability 𝑃 (𝑙𝑜𝑠 = 1 ∣ ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 = 0) for patients 
with low heart rate (0) to the counterfactual scenario where their 
heart rate is normal (1). The counterfactual probability 𝑃 (𝑙𝑜𝑠∗ =
1 ∣ ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 = 0), 𝑙𝑜𝑠∗ = 𝑙𝑜𝑠ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒←1

1 suggests a decrease in 
the likelihood of extended ICU stay when the heart rate is normal.

(b) Saturation: Similarly, we examined the effect of oxygen satura-
tion by comparing the baseline probability 𝑃 (𝑙𝑜𝑠 = 1 ∣ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
3) for patients with very low oxygen saturation (3) to the coun-
terfactual scenario with normal oxygen saturation (0). The coun-
terfactual probability 𝑃 (𝑙𝑜𝑠∗ = 1 ∣ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 3), 𝑙𝑜𝑠∗ =
𝑙𝑜𝑠𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛←0 indicates that there is only a marginal difference 
in the probability of an extended ICU stay when the patient’s 
saturation level is normal.

(c) Glucose and Urea Nitrogen: We further analysed the role of 
glucose and Urea Nitrogen levels. Interestingly, for both high 
glucose 𝑃 (𝑙𝑜𝑠 = 1 ∣ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 = 2) and high Urea Nitrogen 
𝑃 (𝑙𝑜𝑠 = 1 ∣ 𝑈𝑟𝑒𝑎𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 2), the counterfactual scenarios 
with normal levels (glucose = 1 and Urea Nitrogen = 1, re-
spectively) showed slightly increased probabilities of extended 
ICU stay 𝑃 (𝑙𝑜𝑠∗ = 1 ∣ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 = 2), 𝑙𝑜𝑠∗ = 𝑙𝑜𝑠𝐺𝑙𝑢𝑐𝑜𝑠𝑒←1 and 
𝑃 (𝑙𝑜𝑠∗ = 1 ∣ 𝑈𝑟𝑒𝑎𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 2), 𝑙𝑜𝑠∗ = 𝑙𝑜𝑠𝑈𝑟𝑒𝑎𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛←1. Thus, 
the probability of extended ICU stay may be increased even if the 
patient had normal glucose and urea nitrogen levels.

(d) Temperature: Finally, we explored the influence of body tem-
perature. The baseline probability for extended ICU stay with 
high fever 𝑃 (𝑙𝑜𝑠 = 1 ∣ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 2) was compared to 
the counterfactual scenario with normal temperature (0). This 
resulted in a minor decrease in the probability 𝑃 (𝑙𝑜𝑠∗ = 1 ∣
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 2), 𝑙𝑜𝑠∗ = 𝑙𝑜𝑠𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒←0, which suggests a slight 
decrease in the likelihood of extended ICU stay, if the patient had 
normal body temperature.

Fig.  9 illustrates the probability of a patient remaining in the ICU 
for more than four days (𝑙𝑜𝑠 = 1) under various counterfactual scenar-
ios involving five different variables: Heart Rate, Saturation, Glucose, 
Urea, and Temperature. Each line in the plot represents one of these 
variables, with the 𝑥-axis displaying the factual and counterfactual 
scenarios and the 𝑦-axis showing the probability values. This figure 
provides insights into how alterations in these variables influence the 
likelihood of an extended ICU stay.
Framingham data:. This data offers a wealth of information on car-
diovascular risk factors. To leverage counterfactual explanations ef-
fectively, we strategically select the features with high explanatory 
potential for predicting CHD.

(a) BMI:  We began our analysis by examining the impact of Body 
Mass Index (BMI) on the likelihood of developing CHD. Starting 
with a BMI of 2 (High), indicative of CHD, we delved into 

1 Here, 𝑙𝑜𝑠∗ denotes a copy of the outcome variable 𝑙𝑜𝑠 in the counterfactual 
world created by the intervention. The expression 𝑙𝑜𝑠∗ = 𝑙𝑜𝑠ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒←1 follows 
the probability-tree convention of Genewein et al. [6], and corresponds to 
Pearl’s standard notation 𝑌𝑋=1, where 𝑌  is the outcome (𝑙𝑜𝑠) and 𝑋 is the 
intervened variable (ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒).
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Fig. 8. Counterfactual analysis using PCF. The left panel represents the observed environment, where the probability of diabetes is conditioned on the presence of 
high cholesterol: 𝑃 (𝑦 = 1 ∣ 𝑧 = 1). The right panel depicts a counterfactual world in which we estimate the outcome if the high cholesterol condition were absent, 
represented as 𝑃 (𝑦∗ = 1 ∣ 𝑧 = 1), where 𝑦∗ = 𝑦𝑧←0. Here, 𝑧 denotes the causal variable HighChol, 𝑦 is the observed outcome Diabetes, and 𝑦∗ is the counterfactual 
outcome under the intervention.
Fig. 9. Line plots showing the probability of ICU stay exceeding 4 days under factual and counterfactual scenarios for various health variables.
counterfactual scenarios to explore the probability of CHD had 
the patient possessed a normal BMI (0). The baseline probability 
𝑃 (𝐶𝐻𝐷 = 1 ∣ 𝐵𝑀𝐼 = 2), represents the likelihood of CHD 
under the existing BMI condition. Interestingly, the counterfactual 
probability 𝑃 (𝐶𝐻𝐷∗ = 1 ∣ 𝐵𝑀𝐼 = 2), 𝐶𝐻𝐷∗ = 𝐶𝐻𝐷𝐵𝑀𝐼←0, 
reveals that even with a normal BMI, the risk of CHD might still 
remain relatively high.

(b) Systolic Blood Pressure (sysBP) and Diastolic Blood Pres-
sure (diaBP): We investigated the influence of blood pressure 
measurements (systolic pressure, or sysBP, and diastolic pres-
sure, or diaBP) of patients on CHD prevalence. Individuals with 
high blood pressure (represented by a score of 3 for both sysBP 
and diaBP) were found to have a higher chance of having CHD 
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𝑃 (𝐶𝐻𝐷 = 1 ∣ 𝑠𝑦𝑠𝐵𝑃 = 3), 𝑃 (𝐶𝐻𝐷 = 1 ∣ 𝑑𝑖𝑎𝐵𝑃 = 3). We 
then considered a hypothetical scenario: what if these patients 
with high blood pressure had normal values instead (sysBP = 1 
and diaBP = 1)? The corresponding probabilities, 𝑃 (𝐶𝐻𝐷∗ = 1 ∣
𝑠𝑦𝑠𝐵𝑃 = 3), 𝐶𝐻𝐷∗ = 𝐶𝐻𝐷𝑠𝑦𝑠𝐵𝑃←1 and 𝑃 (𝐶𝐻𝐷∗ = 1 ∣ 𝑑𝑖𝑎𝐵𝑃 =
3), 𝐶𝐻𝐷∗ = 𝐶𝐻𝐷𝑑𝑖𝑎𝐵𝑃←1, show how lowering blood pressure 
could potentially decrease the risk of CHD.

(c) Total Cholesterol (totChol): We explored the potential influence 
of total cholesterol (totChol) on the development of CHD using 
counterfactual analysis. In the factual scenario, we assessed pa-
tients based on their actual totChol (totChol = 3). The baseline 
probability was determined as 𝑃 (𝐶𝐻𝐷 = 1 ∣ 𝑡𝑜𝑡𝐶ℎ𝑜𝑙 = 3). In 
the counterfactual scenario, we posed the question: what if these 
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Fig. 10. Probability distribution of TenYearCHD for factual and counterfactual scenarios for various variables.
patients with high totChol had normal values (totChol = 0)? The 
resulting probability 𝑃 (𝐶𝐻𝐷∗ = 1 ∣ 𝑡𝑜𝑡𝐶ℎ𝑜𝑙 = 3), 𝐶𝐻𝐷∗ =
𝐶𝐻𝐷𝑡𝑜𝑡𝐶ℎ𝑜𝑙←0 suggests that maintaining normal total cholesterol 
levels might be beneficial for reducing CHD risk.

(d) Cigarettes per day (cigsPerDay): Finally, we explored the influ-
ence of smoking. In the factual scenario, we examined patients 
based on their actual cigarette consumption (cigsPerDay = 3). 
The baseline probability was determined as 𝑃 (𝐶𝐻𝐷 = 1 ∣
𝑐𝑖𝑔𝑠𝑃 𝑒𝑟𝐷𝑎𝑦 = 3). The counterfactual scenario asks, ‘‘what if’’ 
these patients who smoke heavily cigsPerDay = 3(≥ 11 cigarettes/
day) had never smoked (cigsPerDay = 0)? The resulting probabil-
ity 𝑃 (𝐶𝐻𝐷∗ = 1 ∣ 𝑐𝑖𝑔𝑠𝑃 𝑒𝑟𝐷𝑎𝑦 = 3), 𝐶𝐻𝐷∗ = 𝐶𝐻𝐷𝑐𝑖𝑔𝑠𝑃 𝑒𝑟𝐷𝑎𝑦←0
suggests that quitting smoking could be beneficial for reducing 
CHD risk.

Fig.  10 illustrates the line plots generated to explore the distribution 
of risk factors for CHD using counterfactual analysis. It can be observed 
that the counterfactual scenarios pertaining to sysBP, diaBP, totChol 
and cigsPerDay potentially change the probability of 𝐶𝐻𝐷 = 1.

Diabetes data:. This section explores the application of counterfactual 
explanations within the diabetes dataset. By strategically selecting 
features, we focus on identifying modifiable risk factors.

(a) HighBP: We examined the relationship between HighBP and the 
prevalence of diabetes. In the actual scenario, patients were eval-
uated based on their recorded blood pressure levels (HighBP = 1). 
The baseline probability was calculated as 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦 = 1 ∣
𝐻𝑖𝑔ℎ𝐵𝑃 = 1). However, in the hypothetical scenario, we posed 
the question: what if these patients with high blood pressure had 
normal blood pressure (HighBP = 0)? The resulting probability 
𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 1 ∣ 𝐻𝑖𝑔ℎ𝐵𝑃 = 1), 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ =
𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦𝐻𝑖𝑔ℎ𝐵𝑃←0 suggests a potential benefit of maintain-
ing normal blood pressure to reduce the risk of diabetes. This is 
in accordance to the literature which states that Blood pressure 
control is just as important as glycemic control [92].

(b) HighChol: We examined the influence of high cholesterol (High-
Chol) on the prevalence of Diabetes. In the factual scenario, 
patients were evaluated based on their actual cholesterol mea-
surements (HighChol = 1). The baseline probability was com-
puted as 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦 = 1 ∣ 𝐻𝑖𝑔ℎ𝐶ℎ𝑜𝑙 = 1). However, in 
the counterfactual scenario, we considered: what if these patients 
with high cholesterol had normal levels (HighChol = 0)? The 
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resulting probability 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 1 ∣ 𝐻𝑖𝑔ℎ𝐶ℎ𝑜𝑙 = 1), 
𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦𝐻𝑖𝑔ℎ𝐶ℎ𝑜𝑙←0 highlights the po-
tential advantage of normalising cholesterol levels in mitigating 
the risk of diabetes.

(c) BMI: We explored the impact of BMI on diabetes prevalence 
using counterfactual analysis. In the factual scenario, we assessed 
patients based on their actual BMI (BMI = 2). The baseline prob-
ability was 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦 = 1 ∣ 𝐵𝑀𝐼 = 2) The counterfactual 
scenario investigated the hypothetical scenario where patients 
with high BMI (BMI = 2) had a normal BMI (BMI = 0). We 
aimed to determine the impact of this hypothetical change on 
diabetes risk. The resulting probability 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 1 ∣
𝐵𝑀𝐼 = 2), 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦𝐵𝑀𝐼←0 suggests a 
potential benefit of maintaining a healthy weight (represented by 
normal BMI) in reducing diabetes risk.

(d) GenHealth: This study investigated the link between a patient’s 
overall health (GenHealth) and their risk of developing dia-
betes using counterfactual analysis. The indicative premise is 
that the patient has poor health (GenHealth =3), and the sub-
junctive (counterfactual) premise is if the patient has excel-
lent health (GenHealth =1) in an alternate reality. The base-
line probability was determined as 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦 = 1 ∣
𝐺𝑒𝑛𝐻𝑒𝑎𝑙𝑡ℎ = 3) The probability resulting from the subjunc-
tive premise, 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 1 ∣ 𝐺𝑒𝑛𝐻𝑒𝑎𝑙𝑡ℎ = 3), 
𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦∗ = 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠_𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑛𝐻𝑒𝑎𝑙𝑡ℎ←1illustrates the poten-
tial benefit of maintaining the overall well-being so as to reduce 
the risk of diabetes.

Fig.  11 illustrates the change in 𝑃 (𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1) as a result of the 
counterfactual statements described.

Standard predictive models typically highlight associations between 
risk factors and outcomes, but they do not offer insight into how 
modifying those factors would alter individual patient trajectories. 
In contrast, PCF enables counterfactual analysis that estimates the 
expected change in outcome probability under specific hypothetical in-
terventions. For instance, in the Framingham dataset, adjusting systolic 
blood pressure from high to normal reduces the estimated probability 
of CHD, while in the MIMIC-IV cohort, normalising heart rate results 
in a lower predicted probability of extended ICU stay. These estimates 
move beyond associative insights by quantifying potential benefits of 
intervention at the patient level. Such information is particularly valu-
able in clinical settings where decisions must balance risk, feasibility, 
and expected benefit, offering a pragmatic framework to assess how 
targeted changes in modifiable variables might influence outcomes.
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Fig. 11. Probability Distribution of Diabetes for factual and counterfactual scenarios for various variables.
6. Conclusion

This study introduces the Probabilistic Causal Fusion (PCF) frame-
work, which combines Causal Bayesian Networks (CBNs) and Prob-
ability Trees (PTrees) to enhance healthcare decision-making. This 
innovative approach harnesses the causal structure learned by the CBN 
to establish the foundational framework of the PTree. This synergy 
yields a three-fold benefit: (1) it captures the inherent causal rela-
tionships within the data, leading to a more robust understanding of 
the factors influencing outcomes, (2) it facilitates the incorporation 
of domain knowledge through counterfactual analysis, empowering 
clinicians to integrate their expertise into the model, and (3) it fa-
cilitates the creation of a centralised repository of causal knowledge 
across institutions. This fosters collaboration, knowledge exchange, and 
continuous improvement in healthcare delivery.

Rigorous validation using three real-world medical datasets, MIMIC-
IV, Framingham Heart Study, and BRFSS, demonstrates that the pro-
posed methodology achieves prediction performance on par with es-
tablished models. Importantly, these datasets span diverse clinical 
domains, critical care, cardiovascular health, and chronic disease, 
highlighting the framework’s generalisability across settings. However, 
PCF’s true strength lies in its ability to surpass mere prediction and 
empower clinicians. Unlike traditional machine learning methods, this 
framework facilitates the exploration of hypothetical interventions and 
counterfactual scenarios through counterfactual analysis. While PCF 
achieves predictive performance that is comparable to standard models 
such as decision trees and ensemble methods, it does not consistently 
exceed them in accuracy. This outcome highlights a trade-off inherent 
in the design of PCF: the framework emphasises causal interpretability 
and support for interventional analysis, which may come at the expense 
of slight reductions in predictive performance.

This enhanced functionality translates into a more comprehensive 
toolkit for healthcare professionals. Unlike conventional models that 
focus solely on prediction, PCF enables prediction, interventional rea-
soning, and counterfactual analysis within a single framework. This 
multi-faceted capability offers a holistic approach to clinical deci-
sion support, allowing clinicians to not only anticipate outcomes but 
also explore the potential effects of modifiable risk factors and hy-
pothetical treatment strategies. This deeper understanding of vari-
able interactions and intervention effects significantly improves clinical 
decision-making, ultimately leading to optimised patient care.
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A key strength of this approach is its dual applicability at the in-
dividual and population levels. Clinicians can leverage this framework 
to gain insights into broader population trends while simultaneously 
exploring personalised treatment options for specific patients through 
counterfactual analysis. This versatility empowers healthcare profes-
sionals to tailor their decision-making to the unique circumstances of 
each patient while simultaneously informing clinical best practices for 
the entire population.

In addition to its predictive and causal capabilities, PCF supports 
multi-level interpretability through the integration of sensitivity anal-
ysis and SHAP. Sensitivity analysis provides macro-level insights by 
highlighting how changes in causal parameters affect outcomes across 
the CBN structure. In contrast, SHAP offers micro-level explanations 
by attributing individual predictions to specific input features. This 
dual approach enables clinicians to understand both the broader causal 
mechanisms at play and the factors driving patient-specific outcomes, 
offering a more complete rationale for clinical decision-making.In sum-
mary, the PCF framework offers a combination of (i) robust validation 
across diverse clinical datasets, (ii) integrated prediction, intervention, 
and counterfactual capabilities, and (iii) interpretability at both macro 
and micro levels. These features collectively distinguish PCF as a practi-
cal and transparent alternative to standard predictive models in clinical 
machine learning.

Our study suggests that this approach holds significant promise for 
evidence-based clinical decision-making. However, further exploration 
is needed to address several limitations:

1. Computational and scalability constraints: Optimising computa-
tional efficiency, especially for large datasets, is crucial for broader 
applicability. While PTrees offer clear interpretability, they are suscep-
tible to the ‘‘curse of dimensionality,’’ as the number of variables and 
branching paths increases. To address this, future work could explore 
the use of Chain Event Graphs (CEGs), which have been shown to rep-
resent context-specific and asymmetric relationships more compactly. 
Notably, CEGs have been applied to causal inference problems with 
success, offering a potential direction to enhance the scalability and 
expressiveness of the PCF framework [93]. The computational com-
plexity of the PCF framework also presents a practical limitation. The 
ensemble-based structure learning procedures and SHAP value com-
putations, particularly when using KernelExplainer, can be resource-
intensive, especially when applied to high-dimensional datasets such as 
MIMIC-IV and BRFSS. These demands may limit the framework’s scal-
ability or its applicability in real-time clinical settings. Future research 
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may explore more computationally efficient alternatives or approxi-
mations to maintain interpretability while improving performance in 
large-scale environments.

2. Assumptions and causal identifiability: As with all causal infer-
ence methods based on observational data, the validity of PCF’s causal 
claims depends on the assumption that all relevant confounders are 
observed and included in the dataset. This assumption underpins both 
the CBN structure and the resulting interventional and counterfactual 
analyses. While model averaging enhances robustness to algorithmic 
variability, it does not eliminate the risk of unmeasured confounding. 
Moreover, although ensemble-based structure learning improves the 
stability of the inferred causal graph, no algorithm can guarantee full 
recovery of the true data-generating process, especially in the presence 
of limited data or complex dependencies. This limitation highlights the 
value of integrating expert domain knowledge alongside data-driven 
discovery, particularly in clinical settings where the validity of causal 
insights is critical. PCF does not claim to surpass expert-informed 
approaches but is designed to flexibly integrate both data-driven dis-
covery and domain expertise. Acknowledging these challenges, future 
extensions of the framework could explore validation using experimen-
tal or interventional data to further reinforce the credibility of the 
inferred causal relationships.

3. Data-sharing and governance considerations: The proposed cen-
tralised causal knowledge repository depends on the ability to share 
pre-trained PCF models and causal structures across institutions. In 
practice, such sharing may be constrained by privacy regulations, 
interoperability issues, and institutional governance policies. Ensuring 
secure, standardised, and ethically governed mechanisms for model 
exchange will be essential for successful deployment.

4. Need for prospective and external validation: While this study 
focused on specific medical domains, future research should investigate 
the framework’s generalisability to a wider range of healthcare settings. 
Incorporating clinical expertise in selecting variables for counterfactual 
and interventional analysis is essential. Clinicians’ insights can refine 
the methodology and enhance its practical utility by ensuring the 
system uses the most relevant and useful data.

Addressing these limitations and broadening the scope of applica-
tions, including the potential use of genomic and multi-omics data, will 
further demonstrate the framework’s potential to advance healthcare. 
Building on this approach can lead to the development of more effec-
tive and transparent tools that enhance patient care. Such tools have 
the potential to support evidence-based clinical decision-making and 
contribute to a more efficient and impactful healthcare system overall.
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Appendix

See Table  7. 

Table 7
Summary of hyperparameters and implementation choices for pcf and baseline 
models.
 Component Parameter Value/Description  
 CBN Structure Learning
 Algorithms used Hill Climbing (HC), TABU, SaiyanH, 

MAHC, Greedy Equivalence Search (GES)
 

 Scoring function BIC (Bayesys default); algorithm-specific 
where applicable

 

 Target-aware search Enabled (outcome-directed search in 
Bayesys)

 

 Max parents per node 3  
 Edge frequency threshold Included if present in at least 2 of 5 

algorithms (≥ one-third frequency, as 
per Bayesys default)

 

 PTree Ensemble (PCF)
 Number of trees 100 PTrees (bootstrapped mini-batches)  
 Batch size 50 samples per tree  
 Variable ordering Derived from model-averaged CBN 

topological sort (partial ordering)
 

 Max depth Not explicitly fixed; controlled via 
pruning

 

 Pruning threshold 𝜃 Dataset-specific; selected via 
pruning-curve analysis, range explored 
𝜃 ∈ [0.0, 0.2]

 

 Decision Threshold 𝝉
 Threshold selection Clinically chosen trade-off between 

sensitivity and specificity (𝜏 = 0.454)
 

 Baseline Models
 Logistic Regression (LR) Solver = liblinear; default 𝐿2

regularisation
 

 Decision Tree (DT) Max depth = 4  
 Random Forest (RF) 100 trees; max depth = 15; max leaf 

nodes = 150; min samples split = 200; 
max features = sqrt; class_weight =
balanced

 

 Gradient Boosting (GB) Standard implementation; no additional 
hyperparameter tuning beyond defaults

 

 XGBoost (XGB) Objective = binary:logistic; max 
depth = 10; learning rate = 1.0; 𝛼 = 10; 
100 estimators

 

 AdaBoost SAMME algorithm; 100 estimators  
 SVM LinearSVC with polynomial (degree = 2, 

interaction-only) and RBF random 
features (𝛾 = 0.01); 𝐶 = 1; with 
StandardScaler

 

 KNN 𝑘 = 3; Euclidean distance  
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