
Understanding Feature Focus in Multitask Settings
for Lexico-semantic Relation Identification

Houssam Akhmouch
Normandie Univ, UNICAEN
ENSICAEN, CNRS, GREYC
Crédit Agricole Brie Picardie

France
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Abstract

Discovering whether words are semantically
related and identifying the specific semantic re-
lation that holds between them is of crucial im-
portance for automatic reasoning on text data.
For that purpose, different methodologies have
been proposed that either (1) tackle feature en-
gineering, (2) fine-tune latent semantic spaces,
or (3) take advantage of cognitive links be-
tween semantic relations in multitask settings.
In this paper, we investigate how feature en-
gineering and multitask architectures can be
improved and consequently combined to iden-
tify lexico-semantic relations. Evaluation re-
sults over a set of gold-standard datasets show
that (1) combinations of similar features are
beneficial (feature sets), (2) asymmetric distri-
butional features are a strong cue to discrimi-
nate asymmetric relations as well as they play
an important role in multitask architectures,
(3) shared-private models improve over binary
and fully-shared classifiers as well as they cor-
rectly balance the focus on features between
private and shared layers1.

1 Introduction

The ability to automatically identify lexico-
semantic relations is an important issue for In-
formation Retrieval and Natural Language Pro-
cessing applications such as question answering
(Dong et al., 2017), query expansion (Kathuria
et al., 2017), or text summarization (Gambhir and
Gupta, 2017). Lexico-semantic relations embody
symmetric and asymmetric linguistic phenomena
such as synonymy (e.g. phone↔ telephone), co-
hyponymy (e.g. phone ↔ monitor), hypernymy
(e.g. phone→ speakerphone) or meronymy (e.g.

1Both the code and the datasets are avail-
able at https://github.com/Houssam93/
Feature-Focus-in-Multi-Task-Learning-NLP
for reproducibility.

phone → mouthpiece), but more can be enumer-
ated (Vylomova et al., 2016).

Most approaches focus on modeling a single se-
mantic relation and consist in deciding whether
a given relation r holds between a pair of words
(w1, w2). The vast majority of efforts (Shwartz
et al., 2016; Vulić and Mrkšić, 2018; Wang and
He, 2020) concentrate on hypernymy which is the
key organization principle of semantic memory, but
studies exist on antonymy (Nguyen et al., 2017b;
Ali et al., 2019), meronymy (Glavaš and Ponzetto,
2017) and co-hyponymy (Jana et al., 2020). Within
this scope, different strategies have been proposed
that either define new features (Santus et al., 2017;
Vu and Shwartz, 2018) or build specific latent se-
mantic spaces (Nguyen et al., 2017a; Rei et al.,
2018; Wang and He, 2020) for the relation at hand.

More recently, multitask strategies have been
proposed, which consist in concurrently learning
correlated lexico-semantic relations (Attia et al.,
2016; Balikas et al., 2019; Bannour et al., 2020),
the underlying idea being that if two (or more) tasks
are cognitively interlinked, a learning architecture
should improve its generalization ability by tak-
ing into account the shared information existing
between the tasks (Caruana, 1998).

In this paper, we propose to investigate how
feature engineering can be coupled to multitask
strategies for the identification of lexico-semantic
relations. On the one hand, Vu and Shwartz (2018)
show that the introduction of the generalized cosine
(Mult) drastically improves results over the unique
concatenation of word embeddings, thus clearly ev-
idencing the limitations of general-purpose latent
spaces. However, a complete study of symmetric
and asymmetric characteristics, and their combi-
nation is still lacking, except (Santus et al., 2017),
one of the most complete work in the field.

On the other hand, although existing multitask
strategies have been showing promising results,
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they neither take advantage of specialized features
nor they implement state-of-the-art architectures,
which have been successful for text classification
(Liu et al., 2017). This might be due to the fact that
the combination of features within shared-private
multitask architectures is not straightforward, and
requires specific tuning.

Evaluation results over a set of gold-standard
datasets (RUMEN (Balikas et al., 2019), ROOT9
(Santus et al., 2016), WEEDS (Weeds et al., 2004)
and BLESS (Baroni and Lenci, 2011)) of an archi-
tecture coupling optimized feature sets and shared-
private models show that

• The combination of features within a family
set improves performance over the use of a
unique family member;

• Asymmetric distributional features are a
strong cue to discriminate asymmetric lexico-
semantic relations;

• Shared-private models improve over binary
and fully-shared classifiers (Balikas et al.,
2019; Bannour et al., 2020) as well as they cor-
rectly balance the focus on features between
private and shared layers;

• Asymmetric distributional features play an im-
portant role in multitask architectures, being
an important source of information for com-
bining both symmetric and asymmetric tasks.

2 Related Work

Three major research directions have been pro-
posed to identify lexico-semantic relations: (1)
feature engineering, (2) construction of fine-tuned
semantic spaces and (3) multitask architectures.

Within the first topic, (Levy et al., 2015) and (Vy-
lomova et al., 2016) proposed similar evaluations
to combine word input vectors (−→w1, −→w2), following
initial experiments of (Baroni et al., 2012; Roller
et al., 2014; Weeds et al., 2014). In particular, word
pairs are encoded as the concatenation of the con-
stituent word representations (−→w1⊕−→w2), their vector
difference (−→w1 − −→w2) or their sum (−→w1 + −→w2). Both
studies evidence that the distributional hypothesis
is domain-dependent by nature and as such models
may not generalize across domains based on these
input representations. To overcome such a limita-
tion (Shwartz et al., 2016; Nguyen et al., 2017b)
proposed to represent contextual patterns as con-
tinuous vectors with successful results, while (Vu

and Shwartz, 2018) defined a generalized cosine
(−→w1⊗−→w2) that successfully combines with (−→w1⊕−→w2).

The second main research direction aims to build
fine-tuned neural latent semantic spaces. (Nguyen
et al., 2017a) proposed HyperVec, where embed-
dings are learned in a specific order to capture the
hypernym–hyponym distributional hierarchy from
a background knowledge of hypernym-hyponym
pairs. (Vulić and Mrkšić, 2018) rather proposed
a post-processing strategy that retrofits the knowl-
edge background into an original latent space. Such
methods suffer from limited coverage as they af-
fect only vectors of seen words. To deal with this
limitation, (Kamath et al., 2019) presented a post-
processing method that specializes vectors of all
vocabulary words by learning a global specializa-
tion function, and (Wang and He, 2020) followed
the same idea but proposed to learn two projection
functions. In the same line, (Bouraoui et al., 2020)
introduced a framework that fine-tunes BERT (De-
vlin et al., 2019) to include relational information.

The third approach tackles relation identification
from the architecture point of view. Within this con-
text, (Attia et al., 2016) can be viewed as a coarse-
grained analysis as they propose a multitask convo-
lutional neural network where one task acts as do-
main adaptation (relatedness between two words)
and the second task is a multiclass classification
problem for hypernymy, meronymy, synonymy and
antonymy. Instead, (Balikas et al., 2019) proposed
a fine-grained approach, that determines whether
the learning process of a given semantic relation
can be improved by the concurrent learning of an-
other relation, where relations are synonymy, co-
hyponymy, hypernymy and meronymy. (Bannour
et al., 2020) implemented the same fully-shared
model, but introduced the idea of data augmenta-
tion via attention models.

Although fine-tuned embeddings have evidenced
improved results over generic ones, they are
relation- and knowledge-dependent. One excep-
tion is proposed by (Meng et al., 2019), which
learns text embeddings in a spherical space (aka.
JoSE) suitable for relational information. Feature
engineering also affords “cheap performance boost”
(Vu and Shwartz, 2018) in resource-free environ-
ments. But, a complete study of the combination of
features is still missing as well as the definition of
asymmetric features in the context of continuous
spaces, although a great deal of work exists for the
discrete case (Kotlerman et al., 2010; Santus et al.,



2017). Finally, studies in multitask settings neither
take advantage of powerful multitask models such
as shared-private architectures (Liu et al., 2017)
that allow to combine task-specific and cross-task
information, nor benefit from the fruitful combina-
tion of distributional and pattern-based features. In
this paper, we propose to deal with the aforemen-
tioned limitations in a resource-free setup.

3 Feature Engineering

Additionally to word embeddings concatenation,
we define three families of features based on the dis-
tributional hypothesis (symmetric and asymmetric
features) and the paradigmatic approach (pattern-
based features) in continuous semantic spaces.

3.1 Distributional Representation

Most studies have been evidencing the superiority
of the concatenation of representational word vec-
tors to infer their semantic relationship (Shwartz
et al., 2016; Vu and Shwartz, 2018). So, we follow
this line of research. Let (w1, w2) be a word pair
and −→w1, −→w2 their respective distributional represen-
tations of dimension d. The input distributional
feature of the word pair is noted −→w1 ⊕−→w2.

3.2 Symmetric Distributional Features

Studies have evidenced the interest of coupling
word embeddings with specific features to improve
relation identification. In particular, the cosine sim-
ilarity measure cos has shown promising results
(Garten et al., 2015; Barkan, 2017). However, Vu
and Shwartz (2018) have demonstrated the effec-
tiveness of integrating the element-wise multipli-
cation of the input vectors, which can be seen as
a generalized cosine (cosG, aka. Mult), which is
defined in equation 1.

cosG(−→w1,−→w2) =

d⊕
i=1

wi
1w

i
2 (1)

While the cosine only provides a unique value
as input, cosG refers to an input of dimension d,
thus evidencing a dimensional issue. As a conse-
quence, we propose to transform the cosG into a
unique value by using a linear activation layer as in
equation 2. The cosG1D can be seen as a control
value of cosG taking into account the dimensional
bias (from high to low dimension).

cosG1D(−→w1,−→w2) =

d∑
i=1

λiw
i
1w

i
2 (2)

The counterpart of equation 2 is the (d times)
duplication of the cosine value. This metric called
cosine broadcast (cosBr) defined in equation 3
aims to control the dimensional issue from a low to
a high dimension.

cosBr(−→w1,−→w2) =

d⊕
i=1

cos(−→w1,−→w2) (3)

As such, in equation 4, we define a family of
symmetric distributional features.

CosF = (cos, cosG, cosBr, cosG1D) (4)

In the next subsection, we detail the design of
new asymmetric distributional measures based on
the Kullback–Leibler divergence.

3.3 Asymmetric Distributional Features
Asymmetry has shown successful results for the
discrete case (Kotlerman et al., 2010; Santus et al.,
2017), the underlying idea being that the relation
between words may be unbalanced such that one
word attracts the other one more than the oppo-
site. Here, we define different asymmetric fea-
tures in the continuous space based on the Kull-
back–Leibler divergence (Kullback and Leibler,
1951). To fit to the continuous case, we transform
each dimension of a word vector with the sigmoid
(σ) function such that all values range between 0
and 1. Thus, each word can be considered as a
probability distribution and the asymmetric metric
Kull is defined in equations 5.

Kull(−→w1|−→w2) =

d∑
i=1

log(
σ(wi

1)

σ(wi
2)
)σ(wi

1) (5)

To take into account both directions of the asym-
metry, we propose to concatenate the Kull values
for both directions as defined in equation 6.

kull(−→w1,−→w2) = Kull(−→w1|−→w2)⊕Kull(−→w2|−→w1) (6)

Similarly to the cosG, we propose to define the
multiplicative version of the kull, such that kullG
integrates the element-wise multiplication of the
input vectors as defined in equations 7 (single asym-
metry) and 8 (concatenation of both asymmetries).

KullG(−→w1|−→w2) =

d⊕
i=1

log(
σ(wi

1)

σ(wi
2)
)σ(wi

1) (7)

kullG(−→w1,−→w2) = KullG(−→w1|−→w2)⊕KullG(−→w2|−→w1) (8)



Similarly to cosG1D and to take into account
the dimensional issue of the multiplicative version
of the Kullback-Leibler, we define kullG1D in
equations 9 and 10 .

KullG1D(−→w1|−→w2) =

d∑
i=1

λilog(
σ(wi

1)

σ(wi
2)
)σ(wi

1) (9)

kullG1D(−→w1,−→w2) = KullG1D(−→w1|−→w2)⊕ (10)
KullG1D(−→w2|−→w1)

Similarly to cosBr, we propose to define
kullBr based on the (d times) duplication of the
Kulback-Leibler value for both directions as in
equation 11.

kullBr(−→w1,−→w2) =

d⊕
i=1

Kull(−→w1|−→w2) (11)

d⊕
i=1

Kull(−→w2|−→w1)

As such, in equation 12, we define a family of
asymmetric distributional features.

KullF = (kull, kullG, kullBr, kullG1D) (12)

In the next subsection, we present the encoding
strategy of patterns embodying the paradigmatic
approach.

3.4 Pattern-based Paradigmatic Features
Patterns are part of the paradigmatic approach
(Hearst, 1992), which suggests that specific word
sequences may exist that link two words in a given
relation. Some examples of sequences between
word pairs are given in Table 1, which evidence
that some of them can be spurious, and do not nec-
essarily include patterns.

Here, we propose to implement the methodology
of (Shwartz et al., 2016) to encode patterns into
continuous spaces. As such, we transform the k2

most frequent patterns occurring between w1 and
w2 using either BiLSTM or the Universal Sentence
Encoder (USE) (Cer et al., 2018), and then perform
average pooling to get the final input representation.
The encoded i-th most frequent pattern is defined in
equation 13, where j ∈ {BiLSTM,USE}, i ∈ [1..k],

2k allows to deal with spurious sequences.

Relation Path

Synonymy
error or fault

√

change as an alteration
√

burning fuel in the combustion

Hypernymy
aircraft firing rocket into an enemy plane

√

unit that includes screen
√

act was an unconscious ritual

Co-hyponymy
pineapple and apricot

√

chisel usually used with mallet
√

horse frightened by lion
√

Meronymy
bowl from the world of glass

√

television and video
√

couch on seat
√

Random
reference in the book of mormon
nothing to stop the robber
driver was issued traffic ticket

Table 1: Examples of patterns for a word pair (in bold).

and the average representation of the k patterns is
noted patw1,w2

∗,j .

patw1,w2
i,j = encoderj(w1, pathi, w2) (13)

Similarly to CosF and KullF , we define a fam-
ily of pattern-based features PatF in equation 14.

PatF = (pat∗,USE, pat∗,BiLSTM) (14)

In the next section, we present the multitask set-
tings that have been implemented to take into ac-
count relations between lexico-semantic relations.

4 Multitask Settings

Multitask architectures have shown to successfully
combine closely-related lexico-semantic relations.
Within this scope, the fully-shared architecture
has systematically been implemented (Attia et al.,
2016; Balikas et al., 2019; Bannour et al., 2020),
which relies on a unique shared representation ca-
pable of solving the different tasks learned concur-
rently from a given input.

However, the shared-private model has proved to
boost results for text classification (Liu et al., 2017).
In particular, a shared-private network combines
N + 1 different representations (one shared and
N task-specific). As such, the shared layer should
transfer the joint information contained in all tasks,
while private layers should focus on the specific
information of each task.

Moreover, N + 1 different input representations
may coexist in the shared-private case, while a
unique input representation exists for fully-shared
models. Here, we propose to implement both fully-
shared and shared-private architectures for different



combinations of input representations and features
X = (−→w1 ⊕ −→w2, CosF,KullF, PatF ). In partic-
ular, forward selection (Kohavi and Sommerfield,
1995) is used for feature selection, as the search
space is huge, 210 possible combinations3.

4.1 Multitask Architectures

The neural architectures are presented in figure 1
for two tasks. Formally, let Xk be an input vector4,
we compute a shared layer S(Xk) as in equation
15, whereWSk is a weight matrix, bSk a bias vector,
and k ∈ [1,K] (K the number of shared layers).

S(Xk) = σ(WSkXk + bSk ) = Xk+1 (15)

A private layer Hj(Zq), which solves task Tj (j ∈
[1, N ]) is defined in equation 16, where q ∈ [1, Q]
(Q is the number of private layers).

Hj(Zq) = σ(W j
HqZq + bjHq ) = Zq+1 (16)

For the fully-shared architecture Z1 = S(XK) and
for the shared-private model Z1 = S(XK) ⊕Xi,
where Xi is the specific input vector for task Ti.
Finally, the N decisions are defined in equation 17.

Oj = σ(W j
OH

j(ZQ) + bjO) (17)

The parameters are updated by minimising the
binary cross-entropy. Hence, the weights of the
shared layer are updated by minimising the loss
function of each task alternatively, while the pri-
vate layers are updated for their specific task.

4.2 Forward Selection

In order to optimize the feature combination for all
N +1 tasks and thus find the best input vectors for
the shared and private layers (i.e. X , X1 andX2 in
figure 1), we perform forward selection. As such,
we first train the given model to find the best combi-
nation of features within a given family (i.e. within
CosF , KullF and PatF individually)5. Once the
best within-family combination has been defined
for all families, we train the model for all combi-
nations of the best within-family combinations of
features. Note that for the shared-private architec-
ture, we first train the private models independently
to determine Xi (i ∈ [1, N ]) and based on these

3Embedding concatenation is the compulsory input.
4X1 = X , where X is the initial input vector that com-

bines both embeddings and a set of features specific to the
task at hand.

5Here the model is trained three times independently for
each family.

findings, we train the shared-private model to de-
termine X , constrained by the previously learned
private models with input Xi.

5 Experimental Setups

5.1 Datasets

There exist a large body of related works for the
identification of lexico-semantic relations. The first
gold-standard dataset, WEEDS, has been proposed
by (Weeds et al., 2004) in the context of studies
about measures of lexical similarity. Following
the same objective, (Baroni and Lenci, 2011) intro-
duced the well-known BLESS dataset, and (San-
tus et al., 2016) compiled the ROOT9 dataset6,
which contains word pairs randomly extracted from
EVALution (Santus et al., 2015), Lenci/Benotto
(Benotto, 2015) and BLESS (Baroni and Lenci,
2011). Within the context of concurrent identifi-
cation of lexico-semantic relations, (Balikas et al.,
2019) recently introduced the RUMEN dataset7 to
include synonymy. As the patterns are not included
in the original datasets, we downloaded the En-
glish wikipedia dump8 and extracted all patterns
that do not exceed a maximum length of 10 words9.
All datasets10 are summarized with their specific
characteristics in Table 2.

5.2 Learning Configurations

The output dimension of the Universal Sentence En-
coder (USE) equals to 512. The output size of the
BiLSTM ∈ {100, 200, 300, 400, 500}, the number
of patterns (k ∈ [1..5]), the number of hidden lay-
ers (K ∈ {1, 2} and Q ∈ {1, 2}), the number of
neurons ∈ {5, 20, 50, 100, 150, 200, 300} and the
number of epochs ([1..100]) are free hyperparame-
ters that are tuned using grid search. The weights
are initialised with a uniform distribution scaled as
in (Glorot and Bengio, 2010) and updated using
Adam (Kingma and Ba, 2014) with a learning rate
set to 0.001. The network is trained with batches
of 64 examples and the number of iterations is op-
timized to maximize the F1 score on the validation
set. Word embeddings are initialized with the 300-
dimensional representations of GloVe (Pennington

6https://github.com/esantus/ROOT9
7https://bit.ly/2Qitasd.
8shorturl.at/cqtQ8
9This value was tuned experimentally.

10Complete versions are available at
https://github.com/Houssam93/
Feature-Focus-in-Multi-Task-Learning-NLP/
tree/main/Data

https://github.com/esantus/ROOT9
https://bit.ly/2Qitasd
shorturl.at/cqtQ8
https://github.com/Houssam93/Feature-Focus-in-Multi-Task-Learning-NLP/tree/main/Data
https://github.com/Houssam93/Feature-Focus-in-Multi-Task-Learning-NLP/tree/main/Data
https://github.com/Houssam93/Feature-Focus-in-Multi-Task-Learning-NLP/tree/main/Data


Figure 1: Fully-shared and shared-private architectures with multiple input feature combinations. The fully-shared
network only includes the blue layer, i.e. S(Xh).

Synonym Hypernym Co-hyponym Meronym Random

Dataset # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%)
RUMEN (Balikas et al., 2019) 6326 44/14/8/34 6326 65/12/5/18 - - - - 6326 93/4/1/2
ROOT9 (Santus et al., 2016) - - 2447 21/9/6/64 3200 28/14/8/50 - - 1100 78/9/4/9
WEEDS (Weeds et al., 2004) - - 1257 40/13/6/41 2083 60/11/5/24 - - 6326 93/4/1/2
BLESS (Baroni and Lenci, 2011) - - 1337 57/9/4/30 3565 34/12/7/40 2943 99/0/0/1 6702 97/1/0/2

Table 2: Details of the RUMEN, ROOT9, WEEDS and BLESS datasets. 0 / 1 / 2 / >2 stands for the percentage
of word pairs having respectively no pattern, 1 pattern, 2 patterns and more than 2 patterns in the Wikipedia dump.

et al., 2014) or JoSE (Meng et al., 2019). All state-
of-the-art models presented in section 6 have been
implemented to provide average results and per-
form statistical tests11.

5.3 Lexical Split

As suggested in (Levy et al., 2015), lexical split
is applied to all our experiments so that there is
no vocabulary intersection between the test set and
the train/validation sets. Note that for learning
purposes, each dataset is split into train (50%), val-
idation (20%) and test (30%) sub-datasets.

6 Evaluation

All comparative results against four state-of-the-
art models (Shwartz et al., 2016; Vu and Shwartz,
2018; Balikas et al., 2019; Bannour et al., 2020)
are presented in Table 3 for an average of 25 runs
with evidenced statistical significance over four
gold-standard datasets.

6.1 Private Models

We first start by analysing the impact of feature
combination on private models, i.e. when a unique
lexico-semantic relation is taken into account in
the learning process. This stands for the first four

11Source codes are available at
https://github.com/Houssam93/
Feature-Focus-in-Multi-Task-Learning-NLP

rows of Table 3. Unsurprisingly, the introduction
of a combination of (eventually new) features (Best
MLP) outperforms existing models (Shwartz et al.,
2016; Vu and Shwartz, 2018) and the multilayer
perceptron (MLP) that only includes word embed-
dings concatenation (i.e. the simplest baseline).
Note that the Best MLP model includes the architec-
tures of (Shwartz et al., 2016) and (Vu and Shwartz,
2018) as it allows the combination of all family fea-
tures as input.

To better understand the impact of feature engi-
neering, we illustrate results involving all combi-
nations of within-family features and all combina-
tions of in-between best family features in figure 2
(a). Within the cosF family alone (i.e. only cosine-
based metrics are used for the learning process)12,
results clearly evidence the dimensional issue, be-
ing cos and cosG1D the one-dimension metrics
that evidence worst results individually. The sec-
ond important finding lies in the fact that metric
combination steadily improves over individual met-
rics. In particular, (cosG, cosBr, cosG1D) gives
rise to strongest results in the vast majority of cases,
and particularly for hypernymy.

Within the KullF family alone13, results seem
to indicate that kullBr is the less performing
(alone and in combination) feature, although regu-

12Blue dots in figure 2.
13Red dots in figure 2.

https://github.com/Houssam93/Feature-Focus-in-Multi-Task-Learning-NLP
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Synonym vs Random Hypernym vs Random
Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
U

M
E

N

MLP 0.754 0.754 0.750 0.759 0.750 0.757 0.731 0.786
Shwartz and Dagan (2016) 0.713 0.731 0.685 0.783 0.770 0.776 0.754 0.798
Vu and Shwartz (2018) 0.851 0.847 0.864 0.831 0.842 0.843 0.832 0.854
Best MLP 0.867 ? 0.865 ? 0.871 ? 0.859?† 0.863 ? 0.862 ? 0.860 ? 0.865?
Balikas et al. (2019) 0.758 0.759 0.750 0.769 0.759 0.762 0.747 0.778
Bannour et al. (2020) 0.854 0.850 0.873 0.827 0.819 0.784 0.812 0.756
Best Fully-shared (FS) 0.861 0.864 0.843 0.887 0.860 0.859 0.861 0.856
Best Shared-private (SP) 0.870†+ 0.866+ 0.889 †+ 0.844+ 0.869 †+ 0.867 †+ 0.871 †+ 0.864+

Co-hyponym vs Random Hypernym vs Random
Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
O

O
T

9

MLP 0.909 0.939 0.954 0.925 0.904 0.936 0.944 0.929
Shwartz and Dagan (2016) 0.919 0.946 0.955 0.938 0.842 0.901 0.860 0.946
Vu and Shwartz (2018) 0.940 0.961 0.962 0.959 0.943 0.962 0.961 0.964?
Best MLP 0.950 ? 0.967 ? 0.973? 0.959 0.947?† 0.965?† 0.971†? 0.959†
Balikas et al. (2019) 0.909 0.940 0.949 0.931 0.911 0.941 0.949 0.932
Bannour et al. (2020) 0.949 0.966 0.964 0.969+ 0.908 0.932 0.941 0.923
Best Fully-shared (FS) 0.947 0.965 0.971 0.959 0.944 0.963 0.964 0.962
Best Shared-private (SP) 0.951+ 0.968 + 0.971+ 0.964† 0.943+ 0.962+ 0.969+ 0.955+

Co-hyponym vs Random Hypernym vs Random
Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

W
E

E
D

S

MLP 0.720 0.449 0.422 0.479 0.726 0.457 0.432 0.485
Shwartz and Dagan (2016) 0.769 0.532 0.513 0.552 0.716 0.474 0.423 0.539
Vu and Shwartz (2018) 0.848 0.691 0.669 0.714 0.833 0.661 0.641 0.682
Best MLP 0.873 ? 0.737? 0.729? 0.746?† 0.886 ? 0.746? 0.797? 0.701?
Balikas et al. (2019) 0.721 0.443 0.422 0.466 0.724 0.462 0.431 0.498
Bannour et al. (2020) 0.871 0.713 0.754 0.678 0.924+ 0.751 + 0.854+ 0.669
Best Fully-shared (FS) 0.864 0.737 0.685 0.796 0.873 0.736 0.727 0.746
Best Shared-private (SP) 0.890†+ 0.761†+ 0.789†+ 0.736+ 0.882+ 0.743 0.771 0.717†

Meronym vs Random Hypernym vs Random
Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

B
L

E
SS

MLP 0.839 0.748 0.805 0.698 0.845 0.762 0.797 0.731
Shwartz and Dagan (2016) 0.855 0.781 0.807 0.756 0.842 0.754 0.804 0.709
Vu and Shwartz (2018) 0.886 0.820 0.883 0.765 0.882 0.811 0.891? 0.744
Best MLP 0.909 ? 0.864 ? 0.883 0.847 ? 0.905? 0.859 ? 0.872 0.847 ?†
Balikas et al. (2019) 0.846 0.759 0.814 0.711 0.848 0.764 0.812 0.721
Bannour et al. (2020) 0.896 0.837 0.913+ 0.770 0.954 + 0.821 0.883 0.769
Best Fully-shared (FS) 0.903 0.850 0.895 0.810 0.906 0.862 0.861 0.864
Best Shared-private (SP) 0.912 †+ 0.868†+ 0.890† 0.847+ 0.916 0.873†+ 0.906†+ 0.843+

Table 3: Overall results for all architectures with GloVe embeddings. Lexical split is applied. ?, † and + denote
p-value≤ 0.05 based on the t-Test assuming unequal sample variances of metric values between respectively (Best
MLP) against (Vu and Shwartz, 2018), (Best SP) against (Best MLP), and (Best SP) against (Bannour et al., 2020).

larities are difficult to establish as different results
can be observed depending on the dataset. Simi-
larly to the previous observation, the combination
of asymmetric features provides improved results
for the vast majority of cases, suggesting that indi-
vidual values encode complementary information.

Within the PatF family14, the BiLSTM encod-
ing seems to provide superior results to the USE en-
coding, but more importantly, results clearly show
that pattern-based features can be a strong cue for
the classification process provided that a large num-
ber of patterns can be extracted, as it is shown for
ROOT9 (see Table 2 for the number of patterns).

More surprisingly, the CosF features steadily
indicate stronger results than theKullF and PatF
features for asymmetric relations (hypernymy and
meronymy), thus suggesting that symmetry is an
important characteristic for all relations.

Finally, results clearly show that the combina-
tions of the best features per family15 steadily out-
perform results of individual family features, thus

14Black dots in figure 2.
15Green dots in figure 2.

demonstrating their complementarity. In particular,
symmetric and asymmetric distributional features
successfully combine for asymmetric relations, and
the successful combination is with pattern-based
and cosine-based features for co-hyponymy. How-
ever, only symmetric distributional features allow
maximum performance for synonymy, which can
easily be understood as this is a symmetric relation.
To strengthen our comments, we give the distribu-
tion of features for the best configurations in Table
4 (first row) for all datasets and relations.

6.2 Multitask Models

Results of the multitask architectures are presented
in rows 5-8 of Table 3. In particular, the Best Fully-
shared network stands for the model of Balikas
et al. (2019) with an optimized set of input features,
oppositely to their settings which rely on the unique
concatenation of word embeddings. Figures clearly
show the superiority of the shared-private network
(Best SP) over the fully-shared model (Best FS)
for most cases, suggesting that the combination of
private and shared information is beneficial to the



Figure 2: F1 score results for all feature combinations. Bounding box 1 stands for any individual feature alone,
e.g. (cosG, Unique Features) means only cosG. Bounding box 2 stands for any 2-by-2 combination of features,
e.g. (cosBr,Feature 2) refers to (cosBr,cosG). Bounding box 3 refers to the ablation of one feature from the set
of all features, e.g. (Bounding box 3 Blue, Feature 2) refers to (cos,cosBr,cosG1D). Bounding box 4 stands for
the combination of all features for a given family. BcosF , BKullF and BpatF stand for best combination of
features within its respective family.

Synonym vs Random Hypernym vs Random
Algorithm CosF KullF PatF CosF KullF PatF

R
U

M
E

N Best MLP 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
Best FS 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Best SP 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0

Co-hyponymy vs Random Hypernym vs Random
Algorithm CosF KullF PatF CosF KullF PatF

R
O

O
T

9 Best MLP 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0
Best FS 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Best SP 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0

Co-hyponymy vs Random Hypernym vs Random
Algorithm CosF KullF PatF CosF KullF PatF

W
E

E
D

S Best MLP 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0
Best FS 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
Best SP 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0

Meronym vs Random Hypernym vs Random
Algorithm CosF KullF PatF CosF KullF PatF

B
L

E
SS

Best MLP 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0
Best FS 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1
Best SP 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0

Table 4: Best combinations of features for all models.
0 and 1 stand for the absence or the presence, respec-
tively, of the given feature within its family, where the
order is given by equations 4, 12 and 14.

decision process. However, the Best MLP is a hard
model to beat as the Best SP statistically outper-
forms the former architecture 4 times out of 8, and
2 times out of 8 without statistical significance. But

the contrary is only true for ROOT9 (wrt. F1 score),
where Best MLP statistically exceeds Best SP.

The important issue in shared-private architec-
tures is to understand how well they distribute
the feature space between private and shared lay-
ers. For that purpose, we analyse figure 2 (b),
which shows feature combinations for the shared
layer, i.e. when two tasks are learned concur-
rently. Note that in this case, best combinations
from the private models (learned separately) re-
strict the learning process. The first main con-
clusion is that asymmetric distributional features
(KullF ) steadily compete with cosine-based fea-
tures (CosF ), even clearly outperforming the latter
for BLESS, which is definitely not the case within
private models. The same conclusion can be drawn
for pattern-based features PatF , which impact is
much more important in the shared layers than it
is the case in the private models when compared
to CosF . This suggests that when private models
focus more on symmetric features, shared-private
models take advantage of asymmetric features to



Synonym vs Random Hypernym vs Random
Algorithm GloVe JoSE GloVe JoSE

R
U

M
E

N MLP 0.754 0.730 0.757 0.731
Best MLP 0.865 0.870 0.862 0.863
Best SP 0.866 0.869? 0.867? 0.865†

Co-hyponym vs Random Hypernym vs Random
Algorithm GloVe JoSE GloVe JoSE

R
O

O
T

9 MLP 0.939 0.927 0.936 0.922
Best MLP 0.967 0.967 0.965 0.963
Best SP 0.968? 0.966 0.962 0.966?†

Co-hyponym vs Random Hypernym vs Random
Algorithm GloVe JoSE GloVe JoSE

W
E

E
D

S MLP 0.449 0.458 0.457 0.455
Best MLP 0.737 0.758 0.746 0.754
Best SP 0.761 0.764?† 0.743 0.759?†

Meronym vs Random Hypernym vs Random
Algorithm GloVe JoSE GloVe JoSE

B
L

E
SS

MLP 0.748 0.810 0.762 0.798
Best MLP 0.864 0.865 0.859 0.850
Best SP 0.868? 0.865 0.873 0.874†

Table 5: F1 scores with GloVe and JoSE. ? and † de-
note p-value ≤ 0.05 based on the t-Test assuming un-
equal sample variances of metric values between re-
spectively (Best SP JoSE) vs. (Best SP GloVe) and
(Best SP JoSE) vs. (Best MLP JoSE).

capture task dissimilarity (indeed in the concurrent
tasks there is always at least one asymmetric task).

Another interesting observation is that best
models are usually not a combination of different
family features. Only 2 cases out of 8 show
improved results with feature combination. In
fact, such results suggest that private and shared
layers distinctively balance the family feature
space. We clearly see this situation in Table 4 by
looking at the complementarity of the input feature
vectors of private (row 1) and shared-private
models (row 3). For instance, when maximizing
the hypernymy task within the shared-private
model over RUMEN, the private input vectors
are (cosG, cosBr, cosG1D, kull, pat∗,BiLSTM)
for hypernymy and (cosG, cosBr) for syn-
onymy, while the shared input vector is
(kullG, kullBr, kullG1D). It is worth noticing
that this situation does not hold for the fully-shared
models as they are clearly biased towards cosine-
based metrics and rarely include asymmetric
distributional and pattern-based features.

6.3 Spherical text embeddings

We propose to compare our feature-based archi-
tectures with relational embeddings, namely JoSE
(Meng et al., 2019), the underlying idea being to
understand how feature-based strategies can com-
pare and eventually add-on to fine-tuned neural
semantic spaces. Results are illustrated in Table 5.

Results of the baseline MLP model do not evi-
dence a clear advantage of relational embeddings
compared to general-purpose ones like GloVe,

BLESS being the only exception. However, it is
interesting to notice that the proportion of improve-
ment is much more important for JoSE embeddings
when introducing combinations of features. Indeed,
while the MLP model with GloVe overtakes the
JoSE version 5 times out of 8, the Best MLP model
with JoSE overtakes the GloVe version 5 times out
of 8, thus suggesting that spherical embeddings are
sensitive to feature engineering.

Finally, while shared-private architectures pro-
vide overall best results, a clear distinction between
both embeddings is difficult to establish, although
a small tendency towards JoSE embeddings seems
to emerge. Indeed, while the hypernymy relation
is better tackled by relational embeddings (3 out
of 4 configurations), meronymy is better handled
by GloVe although being an asymmetric relation.
With respect to symmetric relations (synonymy and
co-hyponymy), the situation slightly converges to-
wards relational embeddings with better results in
2 out of 3 experiments.

7 Conclusions

In this paper, we proposed the definition of asym-
metric distributional features in continuous spaces
based on the Kullback-Leibler divergence, and sug-
gested to combine them with families of symmetric
distributional and pattern-based characteristics us-
ing a feature selection process. We proposed to
analyse the impact of feature combination in multi-
task settings, which combine private and shared lay-
ers. Results evidenced the benefits of feature com-
bination in the private models, and they highlighted
the importance of asymmetric (distributional and
paradigmatic) features in the shared layers. More-
over, share-private architectures showed the capac-
ity of balancing feature families between private
and shared layers thus taking full advantage of most
features in the decision process.
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