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Abstract

The acquisition of Multiword Lexical Units (MWUs) has
long been a significant problem in Natural Language Pro-
cessing. The access to large-scale text corpora has recently
originated a new interest in phraseology allowing testing
assumptions made about word flexibility constraints. For
that purpose, many statistical measures have been proposed
in the literature. However, most of them do not accomodate
the MWU length factor and so can only evaluate binary
word associations. In order to overcome the lack of gen-
eralization for n individual words, we propose the normal-
ization of four well-known mathematical models and com-
bine each one with a new acquisition process based on lo-
cal maxima. In order to face unsatisfactory results obtained
with the previous normalized measures, we introduce a new
association measure based on the normalized expectation,
the Mutual Expectation.

1. Introduction

The acquisition of Multiword Lexical Units (MWUs)
has long been a significant problem in Natural Language
Processing, being relegated to the borders of lexicographic
treatment. Most of the work in knowledge acquisition
has aimed at extracting explicit information from texts (i.e.
knowledge about the world) and has generally neglected the
extraction of implicit information (i.e. knowledge about the
language). For the past ten years, there has been a renewal
in phraseology mostly stimulated by full access to large-
scale text corpora in machine-readable format. The evo-

lution from formalisms towards lexicalization1 has lead to
propose the hypothesis that the more a sequence of words is
fixed, that is the less it accepts lexical and syntactical trans-
formations, the more likely it will be a MWU. Compound
nouns (Prime minister), compound names (Republic of Yu-
goslavia), compound determinants (a number of), verbal lo-
cutions (to give rise), adverbial locutions (as soon as possi-
ble), prepositional locutions (such as) and conjunctive locu-
tions (on the other hand) share the properties of MWUs23.
In order to test the assumptions made about word flexibil-
ity constraints inherent to MWUs, a great deal of statistical
measures have been proposed in the literature. However,
most of them only evaluate the degree of cohesiveness that
exists within 2-grams (i.e. groups of two words) and do
not deal with the general case of n-grams (i.e. groups of n
words, with � � �). As a consequence, these mathematical
models only allow the acquisition of binary associations and
enticement techniques4 have to be applied to acquire asso-
ciations with more than two words [13] [17] [18] [14] [2].
Unfortunately, such techniques have shown their limitations
as their retrieval results mainly depend on the identification
of suitable 2-grams for the initiation of the iterative pro-
cess. In order to overcome the lack of generalization for the
case of n individual words, we propose the normalization

1i.e. The evolution from ”general” rules towards rules specifying the
usage of words on a case-by-case basis.

2This classification is proposed by [12].
3For explanatory purposes, we’ll access the non-contiguous MWUs

further in the paper.
4As a first step, relevant 2-grams are retrieved from the input corpus.

Then, n-ary associations may be identified by either 1) gathering overlap-
ping 2-grams or 2) by marking the extracted 2-grams as single words in
the text and re-running the system to search for new 2-grams (the process
ends when no more 2-grams are identified).



of four well-known mathematical models (the Dice coeffi-
cient [18], the specific mutual information [1], the � � [11]
and the Log-likelihood ratio [8]) and combine each one with
a new acquisition process based on local maxima of associ-
ation measure values, the LocalMaxs algorithm [15]. How-
ever, in order to face unsatisfactory results obtained with the
previous normalized measures, we have to introduce a new
association measure based on the normalized expectation,
the Mutual Expectation [3]. As a consequence, its combina-
tion with the LocalMaxs algortithm provides a new solution
for the acquisition of n-ary word associations that avoids the
definition of global thresholds and does not require entice-
ment techniques.

2. Data Preparation

A great deal of applied works in lexicography evidence
that most of the lexical relations associate words separated
by at most five other words [16]. But a MWU is a specific
lexical relation and so can be defined in terms of structure
as a specific word n-gram calculated in an immediate span
of five words to the left hand side and five words to the
right hand side of a focus word.

All the European countries forced the
Republic of Yugoslavia to accept
drastic economical sanctions.

Figure 1. Sample sentence

As an example, if Figure 1 is the current input and Republic
(��) is the focus word, the set of all the word n-grams can
be calculated in a span that starts at the first determinant the
and ends at the word drastic, as illustrated in the following
Figure.

Figure 2. Context around the focus word

Two possible 3-grams are shown in Table 1, being the sec-
ond one a typical MWU.

�� � ���� �� � ���� ��

��	
��
� �� ������ �� �����
�
��	
��
� �� �� �� � 
������
�

Table 1. Sample 3-grams from Figure 1

By definition, an n-gram is a vector of n words where each
word is indexed by the signed distance that separates it
from its associated focus word. Consequently, an n-gram
can be contiguous or non-contiguous whether the words in-
volved in the n-gram represent or not a continuous sequence
in the corpus. By convention, the focus word is always
the first element of the vector and its signed distance is
equivalent to zero. We represent an n-gram by the vector
[��	�������	�������	����] where 	�� (for i=2 to n) denotes
the signed distance that separates the word, ��, from the fo-
cus word, ��.
As notation is concerned, we may characterize an n-gram
either 1) by its generic notation or 2) by the sequence of its
constituents as they appear in the corpus. In the latter case,
each interruption of a non-contiguous n-gram is identified
by a gap (”–”) that represents the set of all the occurrences
that fulfill the free space in the text corpus. Table 2 illus-
trates the alternative notation for the sample 3-grams pre-
sented in Table 1.

Alternative Notation
������ � ��	
��
� ���� �����
�

��	
��
� �� � 
������
�

Table 2. Alternative Notation

As computation is concerned, each word is successively
a focus word and all its associated contiguous and non-
contiguous n-grams are calculated avoiding duplicates. Fi-
nally, each n-gram is associated to its frequency in order to
apply the mathematical models that will evaluate its degree
of cohesiveness.

3. Normalized Association Measures

In order to evaluate the degree of cohesiveness existing
between words contained in an n-gram, various mathemati-
cal models adopted from the Theory of Information or based
on the statistical analysis of contingency tables have been
proposed in the literature. However, most of them only eval-
uate the degree of cohesiveness within 2-grams and do not
generalize for the case of n individual words. In this section,
we propose the normalization of four well-known mathe-
matical models in order to accommodate the n-gram length



factor: the Dice coefficient [18], the specific mutual infor-
mation [1], the �� [11] and the Log-likelihood ratio [8]. In
order to face unsatisfactory results5 obtained with the pre-
vious normalized measures, we introduce a new association
measure called Mutual Expectation [3] that is the based on
the normalized expectation.

3.1. Mutual Expectation

By definition, MWUs are groups of words that occur to-
gether more often than expected by chance. From this as-
sumption, we define a new mathematical model, the Mutual
Expectation (ME), based on the concept of Normalized Ex-
pectation (NE).

Normalized Expectation We define the NE of an n-
gram as the average expectation of occurring one word
in a given position knowing the occurrence of the
other � � � words also constrained by their positions.
For example, the average expectation of the 3-gram
���	
��
� � � �� � � � 
������
�� must take into ac-
count all the expectations presented in Table 3.

Expectation of Knowing the gapped 3-gram
��	
��
� [ — �� �� � � � 
������
� ]

�� [ ��	
��
� � � — �� � 
������
� ]
� 
������
� [ ��	
��
� � � �� � � — ]

Table 3. Expectations and NE

The underlying concept of the NE is based on the condi-
tional probability defined as follows in Equation 1.

��� � ��� � �� �
��� � �� � � ��

� � �
(1)

However, in order to capture in one measure the � condi-
tional probabilities associated to the � events obtained by
extracting one word at a time from the n-gram, we need to
introduce the concept of the fair point of expectation (FPE).
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� (2)

We know that only the � denominators of the � condi-
tional probabilities vary while the � numerators remain
unchanged from one probability to another. So, in order to
perform the normalization process, we evaluate the gravity
center of the denominators thus defining an average event,
the FPE. Basically, the FPE is the arithmetic mean of the �
joint probabilities of the sub-��� ��-grams contained in an
n-gram and is defined for each n-gram as in Equation 2.

5We will access the comparative results later in the article.

Hence, the normalization of the conditional probabil-
ity, is realized by the introduction of the FPE into the
general definition of the conditional probability. The
resulting measure is called the NE and it is proposed as a
”fair” conditional probability as defined in Equation 3.
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(3)

Mutual Expectation Daille in [2] shows that one effec-
tive criterion for multiword lexical unit identification is fre-
quency. From this assumption, we deduce that between
two n-grams with the same NE, the most frequent n-gram
is more likely to be a MWU.
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(4)

So, the Mutual Expectation between � words is defined in
Equation 4 based on the NE and the relative frequency.

3.2. Association measures from Information Theory

Dice Coefficient The Dice coefficient has been formu-
lated by Dice [7] and introduced by Smadja [18] for the
extraction of translation equivalents.

���� ��	����	��� �
�� � ��	����	���

� ��	��� � � ��	���
(5)

It measures the cohesiveness that stands between two words
of a 2-gram, [�� 	�� ��], as defined in Equation 5 where
� ����	������, � ������ and � ������ are the respective fre-
quencies of the 2-gram [�� 	�� ��] and the 1-grams [��]
and [��].

Specific Mutual Information The specific mutual infor-
mation, based on the mutual information [10], has been in-
troduced by Church and Hanks [1] for the extraction of col-
locations.


� ��	����	��� � �	
�
� � � ��	����	���

� ��	���� � ��	���
(6)

It measures the cohesiveness within two words of a 2-gram
as defined in Equation 6 where � is the total number of
words in the corpus.

Normalization process The normalization of both mea-
sures needs to take into account all the possible combina-
tions of dividing an n-gram, [�����	�������	����], into two
complementary sub-groups of words. Indeed, the denomi-
nators of both measures point at the division of a 2-gram,
[�� 	�� ��], into two complementary sub-(1-grams), [��]
and [��]. Correspondingly to the ME, the normalization
will be realized by the introduction of an average event
called the Fair Point of Dispersion (FPD) into the general
definitions of the association measures. Let’s first introduce



the dispersion frontier point (DFP) that represents a sym-
bolic border that divides an n-gram into two complemen-
tary sub-groups of words. The DFP may take values from �
to E(n/2)6 as an n-gram can be divided into E(n/2) pairs of
complementary sub-groups as shown in Table 4.

DFP value
# Words

��� sub-group
# Words

��� sub-group
� � �� �
� � �� �
... ... ...

������ ������ ��������

Table 4. Division of an n-gram into 2 comple-
mentary sub-groups

Moreover, for each value of the DFP there exists a combi-
nation of complementary sub-groups of words. For exam-
ple, when DFP=1, there are � possible complementary sub-
groups as there are � possible sub-groups of one word in an
n-gram and correspondingly � possible sub-groups contain-
ing � � � words (See Table 5).

��� sub-group ��� sub-group
� ���� ������	�������	�����
� ���� ���	�������	�������	�����
... ... ...
� ���� ���	�������	�������	�������������

Table 5. All complementary sub-groups of an
n-gram for DFP=1

# Event
� � ������� � ����������������������

� � ������� � ���������������������������

. . . . . .
� � ������� �

�

�������������������������������

��

Table 6. All events of an n-gram for DFP=1

So, for both measures, if we define an event as a
particular denominator7, the FPD for a generic n-gram
[�����	�������	����] will be the arithmetic mean of all the
possible events involved in an n-gram. For example, the

6E(n/2) returns the integer part of the quotient ��
�
�.

7For the case of 2-grams, � ��	��� � � ��	��� is an event for the Dice
coefficient and � ��	��� � � ��	��� is an event for the specific Mutual
Information.

respective events for the Dice coefficient associated to Ta-
ble 5 are illustrated in Table 6. All the necessary equations
to calculate the FPDs are presented in Appendix A.

Normalized measures The normalized measures are ob-
tained by the introduction of the respective fair points of
dispersion into the general definitions.
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The normalized Dice coefficient and the nor-
malized specific mutual information are respec-
tively defined in Equation 7 and Equation 8 where
� �������	�������	������ is the frequency of the generic
n-gram [�����	�������	����], � the number of words
in the corpus and, � � ����� �������	�������	������
the fair point of dispersion for the Dice coefficient and
� � �	
 �������	�������	������ the fair point of dispersion
for the specific mutual information.

3.3. Association measures based on the statistical
analysis of contingency tables

Contingency tables In order to investigate the relation-
ships between words, an n-dimension contingency table is
built for each n-gram providing a convenient display of the
data for analysis. For comprehension purposes, we only
detail the case where � 	 � that involves the definition
of a two-dimension contingency table for each 2-gram. A
contingency table is defined as in Table 7 for each 2-gram,
[��	����], where � is the number of words in the input
text, � the frequency function and ��� mentions the absence
of the argument.

�� �� Total
�� � ����	������ � ����	������ � ������
�� � ����	������ � ����	������ � ������

Total � ������ � ������ �

Table 7. Contingency Table

�� The �� is based on the Pearson’s �� test for � � �
contingency tables and is concerned with testing the null
hypothesis that two random variables are independent. It
has been introduced by Gale [11] in the context of concor-
dances in parallel texts. The null hypothesis of statistical
independence is commonly stated by ��: 	���	����� 	



	����� 	����. So, if �� is minimum then the null hypoth-
esis �� is true and the discrete random variables (or words)
under study are independent otherwise it may be stated that
the two discrete random variables are highly related, with a
certain degree of freedom. The �� is defined in Equation 9.

�
� ����������� � (9)

�
������������������������������
�

���������
�������������������
���������

Log-Likelihood Ratio The Log-likelihood ratio has been
introduced by Dunning [8] for the extraction of collocations
and is concerned with testing the null hypothesis that two
random variables are independent. The null hypothesis of
statistical independence is stated by H�: 	���	�� ���� 	
	���	�� ���� thus setting the independence paradigm be-
tween two rows of the contingency table defined in Table 7.
The Log-likelihood ratio is defined in Equation 10.

���	
�� ����������� � �� ��	 
 � (10)

�� � ��	 ���� �
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� ��������
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�� � ��

��
�� � ��

��
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Normalization process We propose the normalization of
the �� and the Log-likelihood ratio based on two particular
fair points of dispersion, the FPD-left and the FPD-right.
Indeed, the structure of the contingency table suggests that
an n-gram should be divided into a left hand-side (for the � �

part of the contingency table) and a right hand-side (for the
�� part of the contingency table). We define the left hand-
side of an n-gram as the set all the sub-groups of words
that contain from � to E(n/2) words of the n-gram and the
right hand-side of an n-gram as the set all the sub-groups
of words that contain from n-1 to n-E(n/2) words of the n-
gram as illustrated in Table 8.

Left Hand Side Right Hand Side
� �� �
� �� �
��� ���

������ ��������

Table 8. # of words in each sub-group of an
n-gram

So, for both measures, if we define an event as the frequency
of one particular sub-group of an n-gram, the FPD-left for
a n-gram [�����	�������	����] will be the arithmetic mean
of all the possible events of its left part and the FPD-right
for the same n-gram will be the arithmetic mean of all the
possible events of its right part. All the expressions to cal-
culate the particular fair points of dispersion are presented
in Appendix B.

Normalized measures The normalized �� and the nor-
malized Log-likelihood ratio are respectively defined in
Equation 11 and Equation 12.

�����	
��� �
� ���������������������� � (11)
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At this stage, each n-gram can be associated to one asso-
ciation measure value. The following step consists in ex-
tracting MWU candidates from the set of all the n-grams
associated to their cohesiveness value.

4. The Acquisition Process

Most of the approaches proposed in the literature
base their selection process on global association measure
thresholds [1] [2] [17] [18] [13] [14] [9]. This is defined
by the underlying concept that there exits a limit value of
the association measure that allows to decide whether an n-
gram is a MWU or not. However, these thresholds are prone
to error as they depend on experimentation. Moreover, they
highlight evident flexibility constraints as they have to be re-
tuned when the type, the size, the domain and the language
of the document change. The LocalMaxs algorithm [15]



proposes a more robust, flexible and fine-tuned approach
for the election of MWUs as it focuses on the identification
of local maxima of the association measure values.
Let assoc be an association measure, W an n-gram, 
���

the set of all the (n-1)-grams contained in W, 
��� the set
of all the (n+1)-grams containing W and sizeof a function
that returns the number of words of an n-gram, the Local-
Maxs is defined as follows:

�� � 
��� �! � 
��� " is a MWU if
��
#��� �" � 	 � � ����� �" � $ ����� �!���
��
#��� �" � 		 � � ����� �" � � ����� ����
����� �" � $ ����� �!��

Table 9. LocalMaxs Algorithm

The LocalMaxs algorithm proposes a theoretically sound
acquisition process that does not depend on experimenta-
tion and avoids the definition of global thresholds. As a
consequence, it overcomes the problems of portability of
the existing approaches. Indeed, no tuning is needed in or-
der to run the system and any association measure can be
tested. For the purpose of our study, we applied the Local-
Maxs algorithm to the Mutual Expectation, the normalized
Dice coefficient, the normalized specific mutual informa-
tion, the normalized �� and the normalized Log-likelihood
ratio.

5. Evaluation of the Results

In this section, we compare the results obtained by ap-
plying the LocalMaxs algorithm with the five association
measures mentioned so far in the paper, over an English cor-
pus of political debates with approximately 300000 words 8.
The results illustrate that the Mutual Expectation leads to
very much improved results for the specific task of mul-
tiword lexical unit extraction and show that it is possible
to extract precisely compound nouns, names and determi-
nants as well as verbal, adverbial, adjectival, conjunctive
and prepositional locutions (See Table 10 and Table 11 9).
There is no consensus among the research community about
how to evaluate the output of multiword lexical unit extrac-
tion systems. Indeed, the quality of the output strongly
depends on the task being tackled, as a lexicographer or
a translator may not evaluate the same results in the same
manner. A precision measure (P) should surely be calcu-
lated in relation with a particular task. However, in or-
der to define some ”general” rule to measure the preci-

8The corpus has been extracted from the European Parlia-
ment multilingual debate collection which has been purchased
at the European Language Resources Association (ELRA) -
http://www.icp.grenet.fr/ELRA/home.html.

9The numbers are expressed within a ���� scale and ”F” stands for
Frequency.

ME F MWUs
1.04 3 Peace Accord
1.04 3 Court of Justice
1.31 4 to fall within the competence
1.74 5 as soon as possible
1.01 2 bearing in mind
1.00 2 nuclear warhead design calculations

Table 10. Elected contiguous MWUs

ME F MWUs

1.04 2
to allow — — to


foreign observers, the IRC�

1.00 2
Article — of the Council Directive


12, 15�

1.00 2
the — on Climate Change

Conventions, Decisions�

Table 11. Elected non-contiguous MWUs

sion of the system, we propose the following two assump-
tions. Multiword units are valid units if they are grammati-
cally appropriate units (by grammatically appropriate units
we refer to compound determinants/nouns/names and ver-
bal/prepositional/adverbial/conjunctive locutions) or if they
are meaningful units even though they are not grammatical.

� �
� ������� � !�

� ��������� � !�
(13)

"# �
� ������� � !�

$
�� �� ��� ����%�
(14)

Besides, the evaluation of extraction systems is usually
performed with the well-known recall rate. However, we
do not present the ”classical” recall rate in this experiment
due to the lack of a reference corpus where all MWUs
would be identified. Instead, we present the extraction rate
(ER), a measure of coverage, defined as the percentage of
well-extracted MWUs in relation with the size of the corpus
(by well-extracted we mean that the extracted MWUs are
precise according to the definition of precision). The
global results reveal that the Mutual Expectation exhibits
significant progresses in terms of Precision comparing to
all the other measures as illustrated in Table 12.

%� �
�� %& �� '���
(�
� (%) 90.35 49.33 59.31 73.22 48.31

�� (%) 1.71 1.50 0.91 0.93 3.05

Table 12. Comparative results of P and ER

One of the most important points that we can express



against the four other normalized models is that they
raise the typical problem of high frequency words as
they highly depend on marginal probabilities. Indeed,
they underestimate the degree of cohesiveness when the
marginal probability of one word is high. For instance, the
Dice coefficient, the Log-likelihood ratio and the �� elect
the following 2-gram ) 
�(
�* � +
��
�* as the most
significant expression in the overall corpus. However, the
probability that the conjunction and fills in the gap is one.
In fact, the 3-gram [) 
�(
�* �� ��� �� +
��
�*] gets
unjustifiably a lower value of cohesiveness than the 2-gram
[) 
�(
�* � � +
��
�*]. Indeed, the high frequency of
the conjunction and underestimates the cohesiveness value
of the 3-gram. On the opposite, applied with the Mutual
Expectation, the LocalMaxs algorithm elects the longest
and most frequent MWU that contains both words Turkish
and Kurdish that is Turkish and Kurdish political refugees.
In order to assess the results obtained with the ME, we
present in Table 13 the output of the concordancer when
Turkish and Kurdish are searched in the overall text corpus
separated by just one word.

v e n Turkish and Kurdish political refugees b e i
e b y Turkish and Kurdish political refugees i m p
v e n Turkish and Kurdish political refugees i n G

Table 13. Concordances for Turkish �� Kurdish

The same statement as for the Dice coefficient, the Log-
likelihood ratio and the �� ratio can be extended to the
specific mutual information that elects the 2-gram Code
- Practice instead of the well-formed expression Code of
practice extracted with the Mutual Expectation.

The results presented in Table 12 allow the classifi-
cation of the association measures on a general basis.
However, in order to characterize precisely each mathemat-
ical model, we propose more detailed figures in terms of
length and frequency of the extracted MWUs. The results
presented in Figure 3 clearly reveal that most of the MWUs
contain between 2 to 4 words although there are differences
of distribution between each model.

Another important result illustrated in Figure 4 is the fact
that most of the extracted MWUs occur only twice in the
corpus. Indeed, all the models, with the exception of the
Dice coefficient, elect in a great proportion MWUs that oc-
cur only two times in the overall corpus 10.

10More figures can be found in [4] [5] [6].

Figure 3. Extracted n-grams by Category

Figure 4. Extracted n-grams by Frequency

6. Conclusion

In order to avoid the use of unsatisfactory enticement
techniques for the extraction of n-ary textual associations,
we proposed the normalization of five association measures.
The results obtained with four well-known mathematical
models (Dice coefficient, specific Mutual Information, ��

and Log-likelihood ratio) lead us to introduce a new as-
sociation measure, the Mutual Expectation, based on the
concept of Normalized Expectation. We also proposed a
new acquisition process, the LocalMaxs algorithm, that au-
tomatically extracts contiguous and non-contiguous multi-
word lexical units without relying on empirically defined
global thresholds. The system evidences itself by its flex-
ibility, allowing any user to retrieve contiguous and non-
contiguous textual associations from texts of all domains
and languages without any pre-treatment of the corpus or
pre-definition of thresholds. We hardly believe that the
success of applications in the areas of Information Extrac-
tion, Information Retrieval and Machine Translation will
rely on the pre-processing of text corpora in order to bene-
fit from their intrinsic information. The extraction of im-
plicit knowledge such as sub-categorization frames, pp-
attachment and multiword lexical units will enable more
precise text processing and as a consequence will lead to
an adequate normalization of texts in order to extract more
explicit information.



7. Appendix A

We present in this appendix the details of the normal-
ization of the Dice coefficient and the specific mutual in-
formation. We will treat both cases as a single case as the
normalization processes only differ in the operators i.e. �
for the Dice coefficient and� for the specific mutual expec-
tation. As a consequence, we will use the generic notation
� to represent both the � and the � operators.
For each association measure, the respective fair point of
dispersion is the quotient between the sum of all the events
involved by the n-gram and the number of events, as illus-
trated in Equation 15.

����	������� ���������������������� � (15)
��� ����������������������������

� ����������������������������

In order to calculate the number of events of a generic
n-gram, two cases have to be distinguished. On one hand,
if the n-gram contains an even number of words, the total
number of events is the sum of all the combinations of 

words among � words for 
 	 � ��� ������� � �� plus
half of the combinations of ������ words among � words.
Indeed, for this specific case, the last dispersion frontier
point (i.e. �� � 	 ������) divides the n-gram into two
sub-groups with the same size in terms of words. Therefore,
the number of events must be reduced to half. On the other
hand, if the n-gram contains an odd number of words, the
total number of events is the sum of all the combinations
of 
 words among � words for 
 	 � ��� ������. So, the
� ������ function is defined in Equation 16.
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For the case of the �
, ������ function, the sum of all the
events resulting from the division of an n-gram into two
sub-groups is the sum of all the particular sums of events
for all the possible �� � values and is defined in Equation
17.
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(17)

Finally, the �	�� �
, � function is introduced and defined
in Equation 18 where ���� corresponds to an omitted word
of a given succession indexed from 1 to n.
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where " � �� ! � �

8. Appendix B

We present in this appendix the details of the normaliza-
tion of the �� and the Log-likelihood ratio. In both case, two
fair points of dispersion are introduced, i.e. one for the left
hand side and one for the right hand side of an n-gram. Both
FPDs are respectively defined in Equation 19 and Equation
20.

��� 	��� ���������������������� � (19)
��� ������ ��������������������������

� ����������������������������

��� �
��� ���������������������� � (20)
��� ������ ���������������������������

� ����������������������������

We want to notice the reader that in both cases, the
� ������ function is defined in as in Equation 16.
In order to calculate the fair point of dispersion of the
left hand-side and the right hand-side of an n-gram, the
�
, ������ ���� and �
, ������ �
�*� functions are
defined in Equation 21 and Equation 22. For the specific
case of an ”even” n-gram, we rule that the left hand-side
of the n-gram will contain only the sub-groups of ( �� )
words that contain �� and the right hand-side all the
other sub-groups. Indeed, an n-gram that contains an even
number of words can be divided into two equal parts in
terms of word number.
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The �	�� �
, �, �	�� �
, ���� and �	�� �
, �
�*�
functions are finally respectively defined in Equation 23,



Equation 24 and Equation 25.
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where " � �� ! � �
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where " � �� ! � �
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where " � �� ! � �
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corpus. Informatique et Langue Naturelle, pages 373–384,
1993.

[10] R. Fano. Transmission of Information: A statistical theory
of communications. MIT Press, MA, 1961.

[11] W. Gale. Concordances for parallel texts. Proceedings of
Seventh Annual Conference of the UW Center for the New
OED and Text Research, Using Corpora, 1991.

[12] G. Gross. Les expressions figées en franais. Ophrys, Paris,
1996.

[13] A. Salem. La Pratique des segments répétés. Klincksieck,
Paris, 1987.

[14] S. Shimohata. Retrieving collocations by co-occurrences
and word order constraints. ACL-EACL’97, 1997.

[15] J. Silva, G. Dias, S. Guilloré, and G. Lopes. Using local-
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