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medical condition that is suffered by a large number
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Whtrersilyy Gif Ciem Nemmet In particular, we use this network to both regress and
classify the level of depression. Acoustic, textual and
visual modalities have been used to train our proposed network. Various experiments have been
carried out on the benchmark dataset, namely, Distress Analysis Interview Corpus — a Wizard of Oz.
From the results, we empirically justify that a) multitask learning networks co-trained over regression
and classification have better performance compared to single-task networks, and b) the fusion of all
the modalities helps in giving the most accurate estimation of depression with respect to regression.
Our proposed approach outperforms the state of the art by 4.93% on root mean squared error and
1.50% on mean absolute error for regression, while we settle new baseline values for depression

classification, namely 66.66% accuracy and 0.53 F-score.
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Depression is a medical illness characterized by persistent sadness, loss of interest and an inability
to carry out activities that one normally enjoys. It is the leading cause of ill health and disability
worldwide. More than 300 million people are now living with depression, an increase of more
than 18% between 2005 and 2015[]

The causes of depression are not completely known and they may not be attributed to a single
source. Major depressive disorder is likely to be due to complex combinations of factors like
genetics, psychology, and social surroundings of the sufferer. People who have experienced life
events like divorce or death of a family member or friend, who have personality issues such as the
inability to deal with failure and rejection, people with previous records of major depression, and
with childhood trauma are at a higher risk of depression."

Depression detection is a challenging problem as many of its symptoms are covert. Since de-
pressed people socialize less, its detection becomes difficult. Today, for the correct diagnosis of
depression, patients are evaluated on standard questionnaires. Different tools for screening depres-
sion have been proposed in the literature. Some of them are the Personal Health Questionnaire
Depression Scale (PHQ), the Hamilton Depression Rating Scale (HDRS), the Beck Depression
Inventory (BDI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Hospital
Anxiety and Depression Scale (HADS), and the Montgomery and Asberg Depression Rating
Scale (MADRS)E]In particular, the eight-item PHQ-8 is established as a valid diagnostic and
severity measure for depressive disorders in many clinical studies.”

The steadily increasing global burden of depression and mental illness acts as an impetus for the
development of more advanced, personalized and automatic technologies that aid in its detection.
Affective computing is one field of research, which focuses on gathering data from faces, voices
and body languages to measure human sentiment®* and emotion. An important business goal

of affective computing is to build human-computer interfaces that can detect and appropriately
respond to an end user’s state of mind. As a consequence, techniques from affective computing
have been applied for the automatic detection of depression.®

In this paper, we introduce a multitask neural network for modality encoding and an attention-
based neural network for the fusion of all the acoustic, textual and visual modalities. In particular,
we encode six modalities (two acoustic, one textual and three visual). The tasks of the modality
encoders are depression level regression (DLR) and depression level classification (DLC). The
acoustic, textual and visual modality embeddings are then fed to an attention fusion network

to obtain fused vectors. These fused vectors are in turn passed to a deep regression network to
predict the severity of depression based on a PHQ-8 scale. From our experiments, we show that:

e Multitask representation learning networks for DLR and DLC show better performance
compared to single-task representation networks,

e The fusion of all modalities (acoustic, textual, visual) helps in better estimation of depres-
sion level, to the exception of classification,

e Our approach outperforms the previous state of the art by 4.93% on root mean squared
error (RMSE) and 1.50% on mean absolute error for the regression of depression level, and

e The verbal input plays a predominant role in the estimation process, confirming therapists’
experience.

' A statistic reported by the World Health Organization available at https://bit.ly/2rsqQoP.
2Recommendation of the French Haute Autorité de la Santé available at https://bit.ly/2EaOs92,
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I LITERATURE SURVEY

Over the last few years, a great deal of research studies in computer science have been proposed
to deal with mental health disorders.” Within this context, the automatic detection of depression
has received major focus. Some initial initiatives have targeted the understanding of relevant
descriptors that could be used in machine learning frameworks. Scherer et al.® investigated the
capabilities of automatic non verbal behavior descriptors to identify indicators of psychological
disorders such as depression. In particular, they propose four descriptors that can be automati-
cally estimated: downward angling of the head, eye gaze, duration and intensity of smiles, and
self-touches. Cummins et al.? focused on how common para-linguistic speech characteristics
(prosodic features, source features, formant features, spectral features) are affected by depression
and suicidality. Morales et al.™” argued that researchers should look beyond the acoustic proper-
ties of speech by building features that capture syntactic structure and semantic content. Within
this context, Wolohan et al.™ showed that overall classification performance suggests that lexical
models are reasonably robust and well suited for a role in a diagnostic or the monitoring capacity
of depression. Some other interesting work directions using text features include the study of so-
cial media,’® document modeling for personality detection from text,™ eventually using specific
corpora tuned for such tasks."*

Another promising research trend aims at leveraging all modalities into one learning model and is
commonly called multimodal deep learning.’” Multimodal deep learning approaches have been
used in domains such as sentiment analysis"®Z and depression estimation."'® Within the context
of depression estimation, a great deal of successful research studies have been proposed. He et
al.™ evaluated feature fusion and model fusion strategies via local linear regression to improve
accuracy in the BDI score using visual and acoustic cues. Dibeklioglu et al.”” compared facial
movement dynamics, head movement dynamics, and vocal prosody individually and in combi-
nation, and showed that multimodal measures afford most powerful detection. More recently,
Morales et al.®'® proposed an extensive study of fusion techniques (early, late and hybrid) for
depression detection combining audio, visual and textual (especially syntactic) features, through
Support Vector Machine. In particular, they showed that the syntax-informed fusion approach is
able to leverage syntactic information to target more informative aspects of the speech signal, but
the overall results tend to suggest that there is no statistical evidence of this finding.

I METHODOLOGY

Our proposed architecture, termed MT-CombAtt, consists of three main components: a) multitask
learning modality encoders, which take unimodal features as input, and output modality embed-
dings, where tasks are regression and classification, b) an attention-based fusion network that
fuses the individual modalities, and c) a deep neural network that outputs the estimated PHQ-8
score or classifies patients into medically-motivated classes, conditioned on the output of the
attention fusion network.

Multitask Learning Modality Encoders

We use six different modalities for the estimation of depression. All these modalities are encoded
using a multitask learning network, where the two tasks are DLR and DLC. For DLC, we dis-
cretize the PHQ-8 score following medical scales (i.e., none/minimal - [0-4] PHQ-8 score, mild
- [5-9] PHQ-8 score, moderate - [10-14] PHQ-8 score, moderately severe - [15-19] PHQ-8 score,
severe - [20-24] PHQ-8 score), while for regression, PHQ-8 scores are directly predicted. In par-
ticular, we trained two standard multitask learning architectures, which are shown in Figurem

a) the fully-shared multitask architecture, which has a single recurrent layer (or a single stack
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Figure 1. Fully-Shared (left) and Shared-Private (right) Multitask Architectures.

of recurrent layers), that acts as the shared layer for both tasks, b) the shared-private architec-
ture, which has three recurrent layers, two task-specific (one for DLR and one for DLC) and one
shared.

Each of the modality encoders is trained as a separate network through backpropagation. They
are jointly trained to regress and classify depression level, and the outputs of the respective re-
current layers act as the continuous representation (i.e., embedding) of each modality. To test the
advantages of the multitask learning networks over the single-task networks, we trained two sets
of single-task networks, one for DLC and the other one for DLR. The results given in Section[]
show that there is a clear improvement — in RMSE and mean average error (MAE) for DLR, and
in Accuracy and F-score for DLC — of the multitask encoders over the corresponding single-task
encoders.

To encode the time series data of each modality, we use long short-term memory (LSTM) net-
works, with forget gates in the recurrent layer, because of their robustness in capturing long
sequences. For the single-task and the fully-shared multitask networks, the output from the LSTM
layer acts as the encoding vector for a given modality. For the shared-private network, a concate-
nation of the outputs from the shared-LSTM and the DLR (or DLC) task-specific LSTM acts as
the embedding for the input modality. Note that for each modality, we select the encoder that
gives the lowest RMSE (or F-score for DLC) as its modality encoder. These modality embeddings
are then fed to the attention fusion network.

Attention Fusion Network

The attention fusion network uses the attention mechanism to automatically weight the modality
embeddings. By using an attention mechanism, the network “attends” to the most relevant part
of the input to generate the output. Networks with an attention mechanism usually perform better
than their counterpart without attention. As not all modalities are equally relevant for the esti-
mation of depression level, this motivates the introduction of an attention fusion network, as an
extension of the work of Poria et al.*?

The six input modality embeddings are of different lengths. Thus, we pass all of them through

a fully-connected layer to get a common length representation. These vectors are then stacked
vertically, and passed through a fully-connected network. The output layer of this network is a
6-D softmax unit (i.e., one dimension for each modality). The elements in the 6-D output vector,
which we call a-values, represent the importance of the corresponding modality embeddings. We
then multiply the modality embeddings with their a-values, and take the sum of the resultant six
vectors. This sum is the fusion F of six modality embeddings.
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Figure 2. Attention Fusion Network.

PHQ-8 Score Estimation Network

The PHQ-8 score estimation network is a deep network conditioned on the fusion vector F, the
output of the attention fusion network. In particular, F is fed to a few dense and dropout layers.
The resultant vector is finally fed to a) a linear regression unit, which outputs the PHQ-8 score for
regression or b) a linear classification unit, which outputs the PHQ-8 class for classification.

I DAIC-WOZ DEPRESSION DATASET

The DAIC-WOQOZ depression dataseﬂis part of a larger corpus, the Distress Analysis Interview
Corpus,IEI that contains clinical interviews designed to support the diagnosis of psychological
distress conditions such as anxiety, depression, and post-traumatic stress disorder. These inter-
views were collected as part of a larger effort to create a computer agent that interviews people
and identifies verbal and non-verbal indicators of mental illness. The data collected include audio
and video recordings, and extensive questionnaire responses from the interviews conducted by an
animated virtual interviewer called Ellie, controlled by a human interviewer in another room. The
data has been transcribed and annotated for a variety of verbal and non-verbal features.

The dataset contains 189 sessions of interviews. We discarded a few interviews, as some of them
were incomplete and others had interruptions. Each interview is recognized by a unique ID as-
signed to it. Each interview session contains a raw audio file of the interview session, files con-
taining the coordinates of 68 facial landmarks of the participant, HoG (Histogram of oriented
Gradients) features of the face, head pose, eye gaze features of the participant (recorded over the
entire duration of interview using a framework named OpenFace@), a file containing the contin-
uous facial action units of the participant’s face extracted using the facial action coding software
CERT,” the COVAREP and formant feature files of the participant’s voice extracted using a
framework named COVAREP,2% and a transcript file of the interview. All the features, leaving the
transcript file, are time series data.

*http://dcapswoz.ict.usc.edu/.
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The training, development and test split files are provided with the dataset. The training and de-
velopment split files comprise of interview IDs, PHQ-8 binary labels, PHQ-8 scores, participant’s
gender, and single responses to every question of the PHQ-8 questionnaire. The test split file com-
prises of interview IDs and participant’s gender. We use only the training and the development
split, as the labels are not provided for the test split.

I EXPERIMENTAL RESULTS

We used RMSE and MAE to evaluate the regression performance (DLR), and Accuracy and F-
score to evaluate the classification performance (DLC). Tablemillustrates a) the advantages of
multitask representation learning on DLC and DLR over the single-task encodings, and b) the
estimation gains by the fusion of the six modalities using the attention fusion network.

Multitask learning on DLR and DLC shows steady improvements in terms of performance met-
rics compared to the corresponding single-task networks, implying that better encodings can be
obtained from coupling both classification and regression into a joint model. We observe this
behaviour for all the modality encoders, where the fully-shared or the shared-private architec-
tures systematically outperform the single-task model. In particular, this motivates us to test this
approach on different datasets in order to verify generalization issues.

In order to test multimodal issues, we designed four attention-based networks: two based on
single-task representation learning (ST-DLR-CombAtt and ST-DLC-CombAtt) and two others
based on multitask representation learning (MT-DLR-CombAtt and MT-DLC-CombAtt). In
particular, the models were fed with the best corresponding embedding for each of the modality
(based on RMSE for DLR and F-score for DLC). Thus, for instance, MT-DLC-CombAtt received
the following encodings as input: FS-MT-DLC-HP (Head Pose), FS-MT-DLC-EG (Eye Gaze),
SP-MT-DLC-AU (Action Unit), FS-MT-DLC-COV (COVAREP), FS-MT-DLC-FMT (Formant)
and FS-MT-DLC-TXT (Text). On the one hand, regression results show that MT-DLR-CombALt
evidences an improvement of 4.06% in RMSE and 4.91% in MAE over the single-task encod-
ing ST-DLR-CombAtt. On the other hand, classification results show that MT-DLC-CombAdt
presents an increase of 3.03% in Accuracy and an improvement of 4.25% in F-score over the
single-task-based representation ST-DLC-CombAtt. Note however, that while the combination
of all modalities improves results for regression, best results for classification are obtained on
text features only. Overall, results evidence that the verbal input plays a predominant role in the
estimation process, confirming therapists’ experience.

Finally, we compare our best architecture for regression (MT-DLR-CombAtt) with three state-
of-the-art (SOTA) approaches: VFSCsem,27 Ath\,,28 and MMD.Z Note that we are the first to
include depression classification as an extra task. The SOTA methodologies are briefly explained
for the sake of comparison. In V F'SC'em, the authors derive biomarkers from visual, acoustic
and textual modalities. They define semantic context indicators, which use the transcripts to in-
fer a subject’s status with respect to four conceptual classes. The semantic context feature is the
sum of points accrued from all four indicators. This approach is the state of the art on the official
development split of DAIC-WOZ. AW, is the winning approach in AVEC 20172 depression
sub-challenge. The authors use feature extraction methods on acoustic and text features, and
recurrent neural networks on visual features. It is the current state of the art on the test split of
DAIC-WOZ. The authors developed four models, but we compare our approach with the best of
these four models (AWphy). In MMD, the authors propose a multimodal fusion framework com-
posed of deep convolutional neural network (DCNN) and deep neural network (DNN) models.
The framework considers acoustic, textual and visual streams of data. For each modality, hand-
crafted feature descriptors are fed to a DCNN that learns high-level global features with compact
dynamic information. Then, the learned features are fed to a DNN to predict the PHQ-8 scores.
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Table 1. Overall results. ST: Single Task, MT: Multitask, FS: Fully Shared, SP: Shared
Private, DLC: Depression Level Classification, DLR: Depression Level Regression, HP:
Head Pose, EG: Eye Gaze, AU: Action Units, COV: COVAREP, FMT: Formant, TXT: Text.

Architectures RMSE | MAE | Acc (%) | F-score
ST-DLR-HP 6.89 | 567 - -
ST-DLC-HP - - 54.54 0.41
FS-MT-HP 6.75 | 5.48 | 60.60 0.43
SP-MT-HP 6.65 | 553 | 54.54 0.42
ST-DLR-EG 6.67 | 4.72 - -
ST-DLC-EG - - 54.54 0.37
FS-MT-EG 6.50 | 4.60 | 57.57 0.41
SP-MT-EG 6.59 | 5.16 | 57.57 0.39
ST-DLR-AU 6.49 | 555 - -
ST-DLC-AU - - 54.54 0.42
% | FS-MT-AU 6.28 | 5.03 | 54.54 0.44
8 | SP-MT-AU 6.46 | 542 | 57.57 0.45
£ [ STDLR-COV 6.64 | 5.72 - -
S | ST-DLC-COV - - 51.51 0.36
FS-MT-COV 6.55 | 5.67 | 54.54 0.40
SP-MT-COV 6.59 | 571 | 54.54 0.37
ST-DLR-FMT 6.917 | 5.89 - -
ST-DLC-FMT - - 51.51 0.34
FS-MT-FMT 6.72 | 5.77 | 54.54 0.36
SP-MT-FMT 6.69 | 579 | 51.51 0.34
ST-DLR-TXT 490 | 3.99 - -
ST-DLC-TXT - - 60.60 0.45
FS-MT-TXT 496 | 3.90 | 66.66 0.53
SP-MT-TXT 470 | 3.81 | 60.61 0.42
< | ST-DLR-CombAtt | 4.42 | 3.46 - -
S | MT-DLR-CombAtt | 4.24 | 3.29 - -
i | ST-DLC-CombaAtt - - 57.57 0.46
= | MT-DLC-CombaAtt - - 60.61 0.48
< | VFSCeem 446 | 3.34 - -
5| AWgy, 554 | 4.73 - -
@ | MMD 4.65 | 3.98 - -

For multimodal fusion, the estimated PHQ-8 scores from the three modalities are integrated in
another DNN to obtain the final PHQ-8 score. In our experiment, comparative results illustrate
that although VFSCiern, is the best performing SOTA model, our MT-DLR-CombAtt methodology
evidences increased results of 4.93% on RMSE and 1.50% on MAE. Note that on conducting
statistical significance tests, we observe that our results are statistically significant.

I CONCLUSION

In this paper, we showed that multitask representation learning, where tasks are regression and
classification performs better than single-task representation learning for the estimation of depres-
sion level. Moreover, this situation stands both for uni-modal and multimodal inputs. In particular,
this motivates us to further explore the multitask learning approach with regression and classifi-
cation tasks on other datasets to verify whether generalization issues can be found. But mostly,
we evidenced that our models, either multimodal for regression and text-based for classification,
present the new SOTA results over the DAIC-WOZ dataset.
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