
Learning Paraphrases from WNS Corpora

João Cordeiro
CLT and Bioinformatics

University of Beira Interior
Covilhã, Portugal

Email: jpaulo@di.ubi.pt

Gaël Dias
CLT and Bioinformatics

University of Beira Interior
Covilhã, Portugal

Email: ddg@di.ubi.pt

Pavel Brazdil
LIACC

University of Porto
Porto, Portugal

Email: pbrazdil@liacc.up.pt

Abstract

Paraphrase detection can be seen as the task of aligning
sentences that convey the same information but yet are
written in different forms. Such resources are impor-
tant to automatically learn text-to-text rewriting rules.
In this paper, we present a new metric for unsupervised
detection of paraphrases and apply it in the context of
clustering of paraphrases. An exhaustive evaluation is
conducted over a set of standard paraphrase corpora and
real-world web news stories (WNS) corpora. The re-
sults are promising as they outperform state-of-the-art
measures developed for similar tasks.

Introduction
Monolingual text-to-text generation is an emerging research
area in Natural Language Processing. One reason for
the interest in such generation systems is the possibil-
ity to automatically learn text-to-text generation models
from aligned monolingual corpora (Jing & McKeown 2000;
Knight & Marcu 2002; Shi 2002; Barzilay & Lee 2003;
Structuring 2003; M. Le Nguyen & Ho 2004; Marsi & Krah-
mer 2005). Such text collections are usually called para-
phrase corpora. In fact, text-to-text generation is a par-
ticularly promising research direction given that there are
naturally occurring examples of comparable texts that con-
vey the same information yet are written in different styles.
Web news stories are an obvious example. So, presented
with such texts, one can pair sentences that convey the
same information, thereby building a training set of rewrit-
ing examples i.e. a paraphrase corpus. These pairs of sen-
tences are called paraphrases and share almost the same
meaning, but contain different lexical elements and possi-
bly different syntactical structure. However, the unsuper-
vised methodologies proposed so far (Barzilay & Lee 2003;
W.B Dolan & Brockett ) show a major drawback by extract-
ing quasi-exact or even exact match pairs of sentences as
they rely on classical string similarity measures such as the
Edit Distance in the case of (W.B Dolan & Brockett ) and
word overlap for (Barzilay & Lee 2003). Such pairs are ob-
viously useless. As a consequence, we first propose a new
metric - named the Sumo-Metric - that presents a solution to

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

these limitations and outperforms all state-of-the-art metrics
both in the general case where exact and quasi-exact pairs
do not occur and in the real-world case where exact and
quasi-exact pairs occur like in web news stories. Second,
(Barzilay & Lee 2003) show that clusters of paraphrases can
lead to better learning of text-to-text rewriting rules com-
pared to just pairs of paraphrases. For that purpose, they use
the complete-link hierarchical algorithm but do not provide
any evaluation. We fulfill this lack by proposing a compar-
ison of three clustering algorithms and show that improved
results can be obtained with the QT algorithm (L.J. Heyer &
Yooseph ).

Related Work
Three different approaches have been proposed for para-
phrase detection: unsupervised methodologies based on lex-
ical similarity (Barzilay & Lee 2003; W.B Dolan & Brock-
ett ), supervised methodologies based on context similarity
measures (Bar 2003) and methodologies based on linguistic
analysis of comparable corpora (V. Hatzivassiloglou & Es-
kin ). (W.B Dolan & Brockett ) endeavored a work to find
and extract monolingual paraphrases from massive compa-
rable news stories. They use the Edit Distance (also known
as Levenshtein Distance (Levenshtein 1966)) and compare it
with an heuristic derived from Press writing rules. The eval-
uation shows that the data produced by the Edit Distance is
cleaner and more easily aligned than by using the heuristic.
However, using word error alignment rate, results show that
both techniques perform similarly. (Barzilay & Lee 2003)
use the simple word n-gram (n = 1, 2, 3, 4) overlap measure
in the context of paraphrase lattices learning. In particu-
lar, this string similarity measure is used to produce clusters
of paraphrases using hierarchical complete-link clustering.
More deepening techniques rely on context similarity mea-
sures such as (Bar 2003). They find sentence alignments
in comparable corpora by considering sentence contexts (lo-
cal alignment) after semantically aligning equivalent para-
graphs. Although they show interesting results, this method-
ology relies on supervised learning techniques, which need
huge quantities of training data that may be scarce and diffi-
cult to obtain. Others, such as (V. Hatzivassiloglou & Eskin
), go further by exploring harvesting linguistic features com-
bined with machine learning techniques to propose a new
text similarity metric. Once again it is a supervised approach



and also heavily dependent on valuable linguistic resources
which is usually not available for the vast majority of lan-
guages.

Metrics Overview
In the literature, we can find the Levenshtein Distance also
known as the Edit Distance and the Word N-Gram Overlap
Family of similarity measures. In this section, we review all
existing metrics and propose a new n-gram overlap metric
based on the Longest Common Prefix paradigm.

The Levenshtein Distance
The Levenshtein Distance (Levenshtein 1966) is a well-
known metric that may be adapted for calculating Sentence
Edit Distance upon words instead of characters (W.B Dolan
& Brockett ). Considering two strings, it computes the num-
ber of character/words insertions, deletions and substitutions
that would be needed to transform one string into the oppo-
site. A problem, when using the Edit Distance for the de-
tection of paraphrases, is the possibility that there exist sen-
tence pairs that are true paraphrases but are not identified as
such. In fact, if the sentences show high lexical alternations
or different syntactical structures, they are unlikely defined
as similar.

The Word N-Gram Family
Two metrics are usually found in the literature: the word
simple n-gram overlap and the BLEU metric. In order to
be complete, we also propose a new metric based on the
Longest Common Prefix paradigm.

Word Simple N-gram Overlap: For a given sentence
pair, the metric counts how many 1-grams, 2-grams, 3-
grams, ..., N-grams overlap. Usually N is chosen equal to
4 or less (Barzilay & Lee 2003). Let’s name this count-
ing function Countmatch(n-gram). So, for a given N > 1,
this normalized metric evaluates the similarity between sen-
tences Sa and Sb, as given in Equation 1:

simo(Sa, Sb) =
1

N
∗

NX
n=1

Countmatch(n-gram)

Count(n-gram)
(1)

where the function Count(n-gram) counts the maximum
number of n-grams in the shorter sentence.

Exclusive LCP N-gram Overlap: In most work in Natu-
ral Language Processing, the longest a string is, the more
meaningful it should be (G. Dias & Lopes ). Based on
this idea, we propose an extension of the word simple n-
gram overlap metric. The difference between simple and
exclusive n-gram overlap lays on the fact that the exclusive
form counts prefix overlapping 1-grams, 2-grams, 3-grams,
..., N-grams, regarding the Longest Common Prefix (LCP)
paradigm proposed by (Yamamoto & Church 2001). For
example, if some maximum overlapping 4-gram is found
then its 3-grams, 2-grams and 1-grams prefixes will not be
counted. Only the 4-gram and its suffixes will be taken into
account. This is based on the idea that the longer the match
the more significant the match will be. Therefore smaller

matches are discarded. If one wants to normalize the n-gram
overlap then a particular difficulty rises due to the LCP n-
gram considerations i.e. the maximum number of overlap-
ping n-grams depends on the number of (n+1)-gram over-
laps that exist. For that purpose, we introduce a normalized
function expressed in Equation 2

simexo(Sa, Sb) = max
n


Countmatch(n-gram)

Count(n-gram)

ff
(2)

where Sa and Sb are two sentences and the functions
Countmatch(n-gram) and Count(n-gram) are the same as
above with the new matching strategy i.e. we first calculate
simexo(Sa, Sb) for 4-grams and then for the remaining 3-
grams and so on and so forth, and then choose the maximum
ratio.

The BLEU Metric: The BLEU metric was introduced
by (K. Papineni 2001) for automatic evaluation of machine
translation but can easily be adapted to calculate similarity
between two sentences as it is based on the calculation of
string overlaps between texts. The adapted formula is given
below in Equation 3:

BLEU =
1

N
∗ exp[

NX
n=1

log
X

n-gram

Countmatch(n-gram )

Count(n-gram )
] (3)

The Countmatch(n-gram) function counts the number of
exclusive or no-exclusive n-grams co-occurring between the
two sentences, and the function Count(n-gram) the maxi-
mum number of n-grams that exists in the shorter sentence1.

The Sumo-Metric
Four main premises guided our research: (1) Achieve maxi-
mum automation in corpus construction - minimum or even
no human intervention, with high reliability, (2) Penalize
equal and almost equal sentences - they are not useful for
our research needs, but frequent in real-world situations, (3)
Consider pairs having a high degree of lexical reordering,
and different syntactic structure and (4) Define a computa-
tionally fast and well founded metric. The basic idea of the
Sumo-Metric lays on the notion of exclusive lexical links be-
tween a sentence pair, as shown in figure 1.

It is another form to think about 1-gram exclusive overlap.
If a link is established between sentence Sa and sentence Sb,
for the word w, then other occurrences of word w in sentence
Sa will engage a new link to sentence Sb if there exists at
least one more occurrence of w in Sb, besides the one which
is already connected.

Definition
Let’s introduce some notations. The number of links be-
tween the two sentences are defined as λ and the number
of words in the longest and shortest sentence as x and y,
respectively. To calculate the Sumo-Metric S(., .), we first
evaluate the function S(x, y, λ) as in Equation 4

1In our experiments, we will only show the results with no ex-
clusive n-grams as results were worst with exclusive n-grams as we
will show in the last section.



Figure 1: Links between a sentence pair.

S(x, y, λ) = α log2(
x

λ
) + β log2(

y

λ
) (4)

where α, β ∈ [0, 1] and α + β = 1. After that, we compute
the Sumo-Metric S(., .) as in Equation 5.

S(Sa, Sb) =

8<: S(x, y, λ) if S(x, y, λ) < 1.0

e−k∗S(x,y,λ) otherwise
(5)

With the α and β parameters, one may weight the value
of the two main components involved in the calculation as
in any linear interpolation. For example, to give more rel-
evance to the component that depends on λ

y (the shortest
sentence), let β be superior to 0.5. In our experiments we
equally weighted both components, i.e. α = β = 0.52.
The effect of using the log2(.) function is to gradually pe-
nalize pairs that are very similar - remark that for equal
pairs the result is exactly zero. The second branch of func-
tion 5 guarantees that the metric never returns values greater
than 1.0. Theoretical work shows that this is the case when
xαyβ > 2λ. For α = β = 0.5, this occurs when

√
xy > 2λ

or xy > 4λ2. As an example, let us consider the following
two situations:
〈x, y, λ〉 = 〈15, 6, 5〉 ⇒ S(x, y, λ) = 0.924
〈x, y, λ〉 = 〈30, 6, 5〉 ⇒ S(x, y, λ) = 1.424

The first example is clearly a relevant situation. However,
the second example is over-evaluated in terms of similar-
ity. As a consequence, e−k∗S(x,y,λ) is a penalizing factor,
where the constant k is a tuning parameter3 that may scale
this factor more or less. In particular, we can see its effect as
follows.
〈x, y, λ〉 = 〈30, 6, 5〉 ⇒ e−k∗S(x,y,λ) = 0.014

In fact, when sentences tend to be very asymmetric, in
number of words, the computation of S(x, y, λ) gives values
greater than 1.0, despite the number of links that exist. So,
the higher S(x, y, λ) is beyond 1.0, the more unlikely the
pair will be classified as positive with respect to S(., .).

Complexity
The Sumo-Metric is computed in Θ(x ∗ y) time, in the worst
case - when the sentences are completely different, i.e. there
is no link among them. In that case, we compute x ∗ y com-
parisons i.e. each word in the longest sentence is compared

2Best results were obtained in this case for the used corpora set.
3k = 3 was used in our experiments.

with each word from the shortest one. In the best situation
the computation will take only Θ(y) time. This is the case
when the shortest sentence is a prefix of the longest one.
In terms of comparison, all metrics show time complexity
Θ(x ∗ y) except the exclusive LCP n-gram overlap metric
that evidences time complexity Θ((x + y)log(x + y)).

The Corpora Set
Two standard corpora were used for comparative tests be-
tween metrics: The Microsoft Research Paraphrase Corpus
(W.B Dolan & Brockett ), labeled {MSRPC} and a cor-
pus supplied by Daniel Marcu, labeled {KMC}, that has
been used for research in the field of Sentence Compres-
sion (Knight & Marcu 2002; M. Le Nguyen & Ho 2004).
By adapting these corpora we created three new corpora to
serve as a benchmark for our specific purpose. We also auto-
matically created a corpus of web news stories using Google
News to test the metrics in real-world conditions. One major
limitation with the {KMC} corpus is that it only contains
positive pairs. Therefore it should not be taken as such to
perform any evaluation. Indeed, we need an equal number
of negative pairs of sentences to produce a fair evaluation for
any paraphrase detection metric. Although the {MSRPC}
corpus already contains negative pairs, they are only 1901
against 3900 positive examples. To perform an equitable
evaluation, we first expanded both corpora by adding neg-
ative sentence pairs selected from web news stories so that
they have the same number of positive and negative exam-
ples and also created a new corpus based on the combination
of the {MSRPC} and the {KMC}.

The {MSRPC ∪ X−
1999} this new derived corpus con-

tains the original {MSRPC} collection of 5801 pairs (3900
positives and 1901 negatives) plus 1999 extra negative sen-
tences (symbolized by X−

1999), selected from web news sto-
ries.

The {KMC ∪ X−
1087} from the {KMC}, we derived a

new corpus that contains its 1087 positive pairs plus a set
of negative pairs, in equal number, selected from web news
stories and labeled it in the same manner as the previous
corpus.

The {MSRPC+∪KMC∪X−
4987} from the {MSRPC}

and the {KMC}we built a bigger corpus gathering the pos-
itive {MSRPC} part i.e. 3900 positive examples, and the
1087 positive pairs of sentences from the {KMC} corpus,



giving a total of 4987 positive pairs. To balance these pos-
itive pairs we added an equal number of negative pairs, se-
lected in a same manner as described previously. In this
corpus, we intentionally ignored the {MSRPC} negative
pairs as many pairs that are labeled negative, following the
guidelines expressed in (W.B Dolan & Brockett ), are in fact
useful paraphrases.

The {WNS} in order to perform an exhaustive evaluation
of paraphrase metrics, we automatically built a real-world
corpus of web news stories that likely contains paraphrases.
It was compiled on October 2006 from Google News for
three distinct news stories and contains 166 stories.

Results
In a first step, we present a comparative study between al-
ready existing metrics and new adapted ones over the first
three corpora mentioned in the previous section. In a sec-
ond step, once the best metric has been found, we propose
a comparative evaluation of three clustering algorithms to
determine clusters of paraphrases.

How to Classify a Paraphrase?
Before presenting the results, it is is necessary to talk about a
classical problem in classification - thresholds. Thresholds
are parameters that unease the process of evaluation. Ide-
ally, the best parameter should be determined for each met-
ric. However, this is not always the case and wrong evalua-
tions are sometimes proposed in the literature. In our eval-
uation, we do not pre-define any threshold for any metric.
Instead, for each metric, we automatically compute the best
threshold. This computation is a classical problem of func-
tion maximization or optimization. In particular, we use the
bisection strategy (Polak 1971) as it computes fast, and well
approximates the global maximum of our functions. As a
result, we are optimizing the value of the threshold for each
metric in the same way and do not introduce any subjectiv-
ity in the choice of the parameters. In Table 1, we present
the obtained thresholds for the five compared metrics us-
ing a 10-fold cross validation scheme. In the remainder
of this paper, we will rename {MSRPC ∪ X−

1999} as A,
{KMC ∪X−

1087} as B and {MSRPC+∪KMC ∪X−
4987}

as C in order to ease the reading.

Table 1: Thresholds mean and standard deviation
thresholds A B C

edit 17.222± 0.111 20.167± 1.375 17.313± 0.000

simo 0.203± 0.007 0.261± 0.003 0.254± 0.000

simexo 0.501± 0.000 0.725± 0.013 0.501± 0.000

bleu 0.502± 0.003 0.501± 0.000 0.501± 0.000

sumo 0.077± 0.004 0.005± 0.001 0.007± 0.000

The results show that the bisection strategy performs well
for our task as the standard deviation for each measure and
corpus is almost negligible.

First Experiments

In order to evaluate the results of each metric over each cor-
pus, we computed both the F-Measure (Rijsbergen 1979)
and the Accuracy (Mitchell 1997). In particular, the results
were calculated by averaging the 10 F-Measure and Accu-
racy values obtained from the 10-fold cross validation test
executed over the data. For every fold, the best threshold
was found on the 9

10 training data and then used on the 1
10

test block to measure the correspondent F-Measure and Ac-
curacy. The overall results are presented in Table 2.

Table 2: F −Measure and Accuracy results.
% A-Fβ A-Acc. B-Fβ B-Acc. C-Fβ C-Acc.

edit 74.41 67.67 70.65 68.02 80.98 79.02
simo 78.06 73.15 94.66 94.47 91.92 91.79

simexo 77.27 72.37 90.87 90.23 87.19 86.00
bleu 70.77 66.17 82.39 78.89 76.79 74.13
sumo 80.92 78.19 98.45 98.43 98.53 98.53

The results evidenced in Table 2 show that the Sumo-
Metric outperforms all state-of-the-art metrics over all cor-
pora. For instance, on the biggest corpus (C), the Sumo-
Metric correctly classified, on average, 98.53% of all the
9974 sentence pairs, either positives or negatives. It shows
systematically better F-Measure and Accuracy measures
over all other metrics showing an improvement of (1) at least
2.86% in terms of F-Measure and 3.96% in terms of Accu-
racy and (2) at most 6.61% in terms of F-Measure and 6.74%
in terms of Accuracy compared to the second best metric
which is also systematically the simo similarity measure.
Another interesting result is the fact that three metrics be-
have the same way over all corpora. While the Sumo-Metric
is always the best measure, the simple word n-gram overlap
(simo) and the exclusive LCP n-gram overlap (simexo) met-
rics always get second and third places, respectively. So, the
hypothesis proposed by (G. Dias & Lopes ) does not seem to
stand for paraphrase detection. Indeed, counting many times
the same links gives more weight to paraphrase candidates
than just counting only once the relevant “meaningful” links.
On the other hand, the BLEU metric and the Edit Distance
obtain the worst results over all corpora. However, their be-
havior is quite different as it is also evidenced in the next
subsection. The BLEU measure only outperforms the Edit
Distance for the B corpus. Here, it is important to point at
two facts that lead to this situation: (1) the A corpus was
computed based on the Edit Distance and contains a major-
ity of positive examples that are near string matches, and
(2) the C corpus is unbalanced as it contains more positive
examples from the A corpus than from the B corpus. As
a consequence, the Edit Distance gives better results than
the BLEU metric for A and C corpora as they contain more
near string matches as positive examples. Unlikely, the B
corpus contains humanly created paraphrases that generally
show higher lexical and syntactical diversity. In this case,
the BLEU measure shows better behavior than the Edit Dis-
tance.



The Influence of Random Negative Pairs
One may criticize that the superior performance obtained by
the Sumo-Metric depends exclusively on the set of equal or
quasi-equal pairs which are present in the corpora. However,
this is not the case. Indeed, to acknowledge this situation,
we performed another experiment with a corpus similar to
the C corpus (the biggest one) but without any quasi-equal
or equal pair. Let’s call it the C’ corpus. The performance
obtained over the C’ is illustrated in Table 3 and clearly
shows that the Sumo-Metric outperforms all other state-of-
the-art metrics in all evaluation situations, even when equal
or quasi-equal pairs are not present in the corpora.

Table 3: Corpus without quasi-equal or equal pairs
Accuracy % edit simo simexo bleu sumo

C’ 84.31 96.36 90.19 77.98 99.58

In this case, we only show the Accuracy measure
as the F-measure evidences similar results. This give
us at least 99% statistical confidence4 (1% significance)
that Accuracysumo > Accuracysimx, where simx ∈
{edit, simo, simexo, bleu} (any other tested metric).

Second Experiments
While previous similarity measures are tailored to extract
pairs of sentences, clustering algorithms should describe
groups of sentences with similar structures. There are two
main reasons to apply clustering for paraphrase detection.
On one hand, as (Barzilay & Lee 2003) evidence, clusters of
paraphrases can lead to better learning of text-to-text rewrit-
ing rules compared to just pairs of paraphrases. On the other
hand, clustering algorithms may lead to better performance
than stand-alone similarity measures as they may take ad-
vantage of the different structures of sentences in the cluster
to detect a new similar sentence.

While (Barzilay & Lee 2003) only mention the usage of
the complete-link hierarchical clustering algorithm and do
not show any results, we present the results for three algo-
rithms that do not need the pre-definition of the expected
number of clusters: the complete-link hierarchical clustering
algorithm (Day & Edelsbrunner 1984), the single-link hi-
erarchical clustering algorithm (Day & Edelsbrunner 1984)
and the QT algorithm (L.J. Heyer & Yooseph )5. We imple-
mented a QT algorithm and for hierarchical clustering used
the LingPipe package6, a suite of Java libraries for the lin-
guistic analysis of human language. So, each algorithm was
tested over the same similarity matrix based on the Sumo-
Metric over the {WNS} corpus i.e. over a real-world sit-
uation. As the {WNS} corpus was automatically created,
a manual evaluation was needed to assess the results. So,

4By making a proportion statistical test for the accuracies: H0 :
p1 = p2 against H1 : p1 > p2.

5We are making some experiments with the average-link hier-
archical clustering algorithm (Day & Edelsbrunner 1984) and the
EM algorithm (A. Dempster & Rubin ), but at the moment of the
submission results were not ready yet.

6http://www.alias-i.com/lingpipe/

we first statistically defined a subset of n elements of all
the clusters that were found by each algorithm for a confi-
dence level of 90% with ± 0.075 precision error following
simple random sampling (Bhattacharrya & Johnson 1977)
as explained in Equation 6 7.

n = p∗(1− p)∗
hzα/2

d

i2

(6)

The evaluation was individually made by two researchers
and results were then cross-validated to decrease subjectiv-
ity as much as possible. Both researchers were given the fol-
lowing guidelines to define correct clusters of paraphrases:
(1) two sentences are paraphrases if their semantic contents
are similar or if the content of one sentence can be entailed
by the content of the other one and (2) a cluster of para-
phrases is a correct cluster if all combinations of two sen-
tences are paraphrases8. The results are presented in Table
4 where S-HAC and C-HAC respectively stand for Simple
and Complete-link Hierarchical clustering algorithms, QT
for the QT algorithm and sumo for the stand-alone Sumo-
Metric.

Table 4: Precision of clustering algorithms
Precision % sumo S-HAC C-HAC QT
{WNS} 61.79 57.72% 56.91% 64.03

The Sumo-Metric plays the role of the baseline that clus-
tering algorithms should overpass. However, the results
show that only the QT algorithm provides better results.
Indeed, both the simple and the complete-link hierarchical
clustering algorithms show worst results than the baseline9.
As (Barzilay & Lee 2003) mention, clustering may lead to
better results than stand-alone similarity measures. How-
ever, unlike (Barzilay & Lee 2003), the Hierarchical cluster-
ing algorithms do not seem to be the right choice for para-
phrase clustering.

Recall of Clustering Results
Although, we do not know the correct number of clusters of
paraphrases in the {WNS} corpus, we propose to evaluate
the recall of each clustering algorithm by their capacity to re-
build an adapted subset of the reference corpus {MSRPC},
labeled {MSRPC1000 ∪ LIT2000} 10. The results are pre-
sented in Table 5 where r̂ is the recall estimator and the
”Correct” column contains the number of original correct
paraphrase pairs reconstructed as a cluster.

These results show that the three clustering algorithms
perform equally and achieve good recall.

7In these experiments, p∗ = 0.64, d = 0.075 and zα/2 = 1.65
is the usual upper α/2 of the standard normal distribution.

8We point at that quasi-exact and exact matches of sentences
are not considered correct paraphrases.

9For all clustering algorithms, we chose the same normalized
similarity factor of 0.8 (or distance 0.2) for the definition of the
clusters.

10This corpus contains 1000 positive pairs from the {MSRPC}
and 2000 sentences picked from classical literature books, both in
random fashion.



Table 5: Recall of clustering algorithms
Clust. Algor. QT S-HAC C-HAC

Correct 836 826 841br 83.60% 82.69% 84.10%

Conclusion and Future Work
In this paper, we proposed a new metric, the Sumo-Metric,
for finding paraphrases. But, we also performed a compara-
tive study between already existing metrics and new adapted
ones and proposed a new benchmark of paraphrase test cor-
pora. In particular, we tested the performance of 5 met-
rics over 4 corpora. One main and general conclusion is
that the Sumo-Metric performed better than any other mea-
sure over all corpora either in terms of F-Measure and Ac-
curacy. Moreover, the Word Simple N-gram Overlap and
the Exclusive LCP N-gram Overlap are systematically sec-
ond and third in the ranking over all corpora, thus negating
(G. Dias & Lopes )’s assumption for the task of paraphrase
detection. Finally, the Levenshtein Distance (Levenshtein
1966) performs poorly over corpora with high lexical and
syntactical diversity unlike the BLEU measure. However,
when paraphrases are almost string matches, the Edit Dis-
tance outperforms the BLEU measure. Nevertheless, in all
cases, we must point at that the Edit Distance and the BLEU
measure are always classified fourth or fifth in the ranking.
In a second part of the paper, we showed that clustering of
paraphrases can lead to improved results when compared to
stand-alone similarity measures and provide with clusters of
paraphrases that can lead to better learning of text-to-text
rewriting rules compared to just pairs of paraphrases. How-
ever, this situation was only evidenced the QT clustering
algorithm. Indeed, both the Simple and the Complete-link
hierarchical clustering algorithms show worst results than
the baseline, the simple paraphrase pair detection with the
Sumo-Metric. As future work, we plan to insert the notion
of tf.idf (Salton & Buckley 1988) in our metric, as we be-
lieve that word links between sentences should have distinct
weights. Another improvement may be the integration of the
notion of content character n-grams as in (G. Dias & Lopes
). This would lead to use automatically acquired “mean-
ingful” character sequences instead of words thus avoiding
language-dependent stemming and allowing better counts
between sentences.

Acknowledgment
We would like to thank Daniel Marcu for providing us with
his corpus of paraphrases.

References
A. Dempster, N. L., and Rubin, D. Maximum likelihood
from incomplete data via the em algorithm.
2003. Sentence Alignment for Monolingual Comparable
Corpora., Sapporo, Japan.
Barzilay, R., and Lee, L. 2003. Learning to paraphrase:
An unsupervised approach using multiple-sequence align-
ment. In Proceedings of HLT-NAACL.

Bhattacharrya, G., and Johnson, R. 1977. Statistical Con-
cepts and Methods.
Day, W. H., and Edelsbrunner, H. 1984. Efficient algo-
rithms for agglomerative hierarchical clustering methods.
Journal of Classification. 1:1–24.
G. Dias, S. G., and Lopes, J. Extraction automatique
d’associations textuelles à partir de corpora non traités.
Jing, H., and McKeown, K. 2000. Cut and paste based
text summarization. In Proceedings of 1st Meeting of the
North American Chapter of the Association for Computa-
tional Linguistics 178–185.
K. Papineni, S. Roukos, T. W. W.-J. Z. 2001. Bleu: a
method for automatic evaluation of machine translation.
IBM Research Report RC22176.
Knight, K., and Marcu, D. 2002. Summarization beyond
sentence extraction: A probabilistic approach to sentence
compression. Artificial Intelligence 139(1):91–107.
Levenshtein, V. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physice-
Doklady 10:707–710.
L.J. Heyer, S. K., and Yooseph, S. Exploring expression
data: Identification and analysis of coexpressed genes.
M. Le Nguyen, S. Horiguchi, A. S., and Ho, B. T.
2004. Example-based sentence reduction using the hid-
den markov model. ACM Transactions on Asian Language
Information Processing (TALIP) 3(2):146–158.
Marsi, E., and Krahmer, E. 2005. Explorations in sentence
fusion. In Proceedings of the 10th European Workshop on
Natural Language Generation.
Mitchell, T. 1997. Machine Learning.
Polak, E. 1971. Computational methods in optimization.
New York Academic Press.
Rijsbergen, C. J. V. 1979.
Salton, G., and Buckley, C. 1988. Term weighting ap-
proaches in automatic text retrieval. Information Process-
ing and Management 24(5):513–523.
2002. Automatic Paraphrase Acquisition from News Arti-
cles, Sao Diego, USA.
Structuring, M. L. P. T. 2003. Experiments with sentence
ordering. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL).
V. Hatzivassiloglou, J. K., and Eskin, E. Detecting text
similarity over short passages: Exploring linguistic feature
combinations via machine learning.
W.B Dolan, C. Q., and Brockett, C. Unsupervised con-
struction of large paraphrase corpora: Exploiting massively
parallel news sources.
Yamamoto, M., and Church, K. 2001. Using suffix arrays
to compute term frequency and document frequency for all
substrings in a corpus. Computational Linguistics 27(1):1–
30.


