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Medical imaging
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X-ray computed tomography 4

Hand X-Ray Abdomen CT

Case courtesy of Dr Mohammad A. ElBeialy (rID: 47341) and Dr René Pfleger (rID: 40922), Radiopaedia.org
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Image synthesis for the attenuation correction of PET/MR data
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Clinical motivation
� Imperfect attenuation correction on PET/MR scanners

PET data detection

γ

γ

Radiotracer
(molecule marked with a 

radioactive atom)

The radioactive atom emits positrons 
which, when they meet electrons, create 

pairs of photons.

Photon pairs are counted when 
they reach the detectors 

simultaneously.



Positron emission tomography 6

Whole-body PET

Case courtesy of Dr Bruno Di Muzio (rID: 65743), Radiopaedia.org

PET overlaid on CT



Magnetic resonance imaging 7

Protons in
the body

Protons in the MRI scanner, 
aligned with the magnetic field

Protons subjected to the MRI magnetic field
when a radio frequency pulse is applied
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Case courtesy of Dr Mostafa El-Feky (rID: 79193), Dr Pierre VIala (rID: 27366) and Dr Mohammad A. ElBeialy (rID: 52084), Radiopaedia.org
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Neural networks
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Forward propagation in a neuron

𝑥!

𝑥"

𝑥#

∑ "𝑦

"𝑦 = ℎ &
$%&

'

𝑥$𝑤$

Non-linear activation function

Linear combination 
of inputsOutput

𝑤#

𝑤"

𝑤!

Output Inputs Weights Sum Non-Linearity

&
$%&

'

𝑥$𝑤$

MIT Introduction to Deep Learning (introtodeeplearning.com)



Perceptron 11

Forward propagation in a neuron
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Perceptron 12

Importance of non-linear activation functions

Linear activation functions 
à linear decisions

Non-linear activation functions
à arbitrarily complex decisions
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Simplified notation
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Multi output perceptron 14

Multi output neural network with dense layers
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Single layer neural network 17

Simplified notation
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Stacking layers
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Diagnosis of dementia based on imaging biomarkers

𝑥! = volume of fluid
in the brain

𝑥" = brain 
metabolism

Healthy

Dementia?

Is this subject healthy?
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Diagnosis of dementia based on imaging biomarkers
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Diagnosis of dementia based on imaging biomarkers
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Training Neural Networks 22

Loss optimisation
• Find the network weights that achieve the lowest loss
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Gradient descent

Algorithm

1. Initialise weights randomly ~𝒩 0, 𝜎!

2. Loop until convergence
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3. Return weights 
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Computing gradients: backpropagation
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Diagnosis of dementia based on imaging biomarkers

Is this subject healthy?

MIT Introduction to Deep Learning (introtodeeplearning.com)
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Convolutional neural 
networks



Using an image as input of a neural network 27

Image = matrix of numbers
0 0 0 0 0 0 1 2 4 4 6 4 5 3 5 4 3 5 5 5 4 5 4 3 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 -1 -2 -1 -1 -1 -1 0 1 1 1 1 0 0 0 1 0 0

1 1 1 1 1 1 1 1 1 -1 -2 0 7 16 20 24 29 30 32 33 25 14 3 -1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 -1 0 14 33 50 49 44 42 38 38 35 34 33 37 45 47 27 1 0 1 1 1 1 1 1

1 1 1 0 1 1 -1 11 45 51 39 37 33 33 49 61 57 60 70 61 49 46 33 46 51 9 -1 1 1 1 1 1

1 1 1 1 1 -1 18 46 33 34 53 63 77 74 79 84 74 82 83 85 73 74 68 37 40 58 16 -1 1 1 1 1

1 1 1 1 -1 18 40 37 61 70 87 89 88 87 83 83 87 86 86 88 73 81 78 72 35 33 54 6 0 1 1 1

1 1 1 0 8 39 39 70 87 86 89 90 89 89 79 79 89 84 87 89 85 76 79 66 55 36 44 30 -2 1 1 1

1 1 1 0 38 38 71 84 87 84 81 80 82 84 83 92 92 85 83 84 79 75 84 70 81 56 31 45 4 0 1 1

1 1 0 12 43 54 82 83 84 76 80 89 91 90 93 94 94 91 83 80 82 90 90 86 76 78 46 39 22 -1 1 1

1 1 -2 28 42 64 83 81 75 82 93 91 87 88 84 79 77 78 93 94 83 83 87 92 88 73 74 36 41 2 1 1

1 1 -1 35 46 79 83 83 78 92 90 67 82 87 87 85 85 70 67 90 95 89 92 89 76 70 86 50 37 16 -1 1

1 0 7 52 44 73 87 82 83 88 91 81 87 94 94 91 92 91 81 69 93 96 86 81 75 86 85 63 35 31 -1 1

1 -1 15 63 26 75 88 88 86 85 90 90 85 92 95 93 91 90 89 84 93 89 81 86 90 90 81 83 38 37 1 1

1 0 7 61 20 27 58 77 83 83 81 79 84 84 84 91 92 87 80 88 85 86 86 86 88 90 88 85 46 39 4 1

1 1 0 38 74 21 19 41 43 46 51 67 67 68 66 79 90 73 71 79 78 83 86 89 90 90 87 85 53 36 3 1

2 1 4 17 36 30 27 10 7 10 12 44 106 96 74 71 83 77 82 86 81 78 78 80 87 82 82 83 44 33 1 1

0 4 25 41 40 30 36 13 5 3 5 12 53 106 87 55 85 89 87 94 88 85 82 78 75 74 76 57 39 21 -1 1

13 29 49 57 37 38 35 26 12 14 29 16 20 64 68 48 67 85 86 92 92 91 87 83 80 73 40 26 48 3 1 3

50 50 66 77 50 39 21 25 27 15 33 50 50 57 39 37 39 53 76 87 89 89 88 85 84 56 28 55 27 -1 0 19

26 20 23 46 44 38 40 39 47 50 40 35 72 77 62 54 41 52 83 85 86 86 85 75 52 37 76 57 1 0 1 6

-1 29 58 64 39 37 43 36 40 41 30 19 59 76 68 55 44 58 72 73 72 65 54 52 52 73 76 20 -1 1 1 1

-1 27 73 73 29 47 50 47 72 66 36 45 58 69 65 45 51 61 89 61 60 62 75 71 75 73 58 1 1 2 2 1

-1 27 72 36 26 54 69 75 77 79 79 73 70 70 62 46 48 63 64 57 70 72 69 64 73 77 28 -2 1 1 1 1

0 23 46 46 70 74 71 71 72 73 74 73 66 64 61 42 38 59 65 57 69 67 63 69 68 67 5 1 1 1 1 1
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1 5 56 42 20 60 70 64 60 61 64 68 41 50 63 47 43 45 38 53 50 51 61 61 55 8 0 1 1 1 1 1

-1 18 58 39 27 51 67 60 55 60 59 60 35 29 58 48 44 46 40 54 53 49 59 56 42 2 1 1 1 1 1 1
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Fully connected neural network
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-1 24 57 35 23 46 57 57 56 58 55 55 37 31 57 47 39 39 40 51 52 49 56 53 30 -1 1 1 1 1 1 1

0 8 44 30 30 48 50 49 50 49 43 49 47 26 49 37 33 40 34 45 46 46 47 44 22 0 2 1 1 1 1 1

0 0 5 17 21 24 25 24 27 26 26 23 13 12 27 23 21 24 26 28 28 30 25 25 13 0 1 0 0 0 0 0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

0

13

50

26

-1

1

1

1

1

1

1

1

1

3

19

6

1

1

1

1

1

1

1

1

1

1

0

.
.
.

		"#

		"$

		"%

		&#,(

		&#,$

		&#,#

		&#,)*

		+

		&,,$

		&,,#

		&,,)-

	./#

.
.
.

Many, many 
parameters
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Using spatial features

Idea: connect patches of input 
to neurons in hidden layer
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Using spatial features

• Slide patch window 
across input image

• Weight pixels inside 
the patch

• Apply weighted 
summation

à Convolution
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The convolution operation
• Slide the filter over the input image

• Element-wise multiply

• Add the outputs

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

FilterImage

⊗
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The convolution operation
• Slide the filter over the input image

• Element-wise multiply

• Add the outputs

1×1 1×0 1×1 0 0

0×0 1×1 1×0 1 0

0×1 0×0 1×1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

4

Feature mapFilterImage

⊗ =

1×1 + 1×0 + 1×1
+ 0×0 + 1×1 + 1×0
+ 0×1 + 0×0 + 1×1
= 4
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The convolution operation
• Slide the filter over the input image

• Element-wise multiply

• Add the outputs

1 1×1 1×0 0×1 0

0 1×0 1×1 1×0 0

0 0×1 1×0 1×1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

4 3

Feature mapFilterImage

⊗ =

1×1 + 1×0 + 0×1
+ 1×0 + 1×1 + 1×0
+ 0×1 + 1×0 + 1×1
= 3
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The convolution operation
• Slide the filter over the input image

• Element-wise multiply

• Add the outputs

1 1 1 0 0

0 1 1 1 0

0 0 1×1 1×0 1×1

0 0 1×0 1×1 0×0

0 1 1×1 0×0 0×1

1 0 1

0 1 0

1 0 1

4 3 4

2 4 3

2 3 4

Feature mapFilterImage

⊗ =

1×1 + 1×0 + 1×1
+ 1×0 + 1×1 + 0×0
+ 1×1 + 0×0 + 0×1
= 4
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Different filters = different feature maps

1 0 -1

1 0 -1

1 0 -1

1 1 1

0 0 0

-1 -1 -1

Original image Vertical edge detection Horizontal edge detection
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CNNs for classification

Input image Feature maps Feature maps

Convolutions + Non-linearity Pooling

Fully connected 
layer
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Convolutional layer
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Spatial arrangement of output volume

1

32

32

depth

width

height

Layer Dimensions: 
ℎ×𝑤×𝑑

ℎ & 𝑤 = spatial dimensions 
𝑑 = number of filters 
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Introducing non-linearity

ℎ(𝑧) = max 0, 𝑧

Rectified linear unit (ReLU) Input feature map Rectified feature map

ReLU

Black: negative values - White: positive values
MIT Introduction to Deep Learning (introtodeeplearning.com)
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Pooling
• Reduce dimensionality while preserving spatial invariance

1 1 8 3

4 7 1 9

5 3 1 4

2 3 6 0

7 9

5 6

Max pooling with
2×2 filter and stride 2

Input feature map

Pooled feature map
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Pooling
• Reduce dimensionality while preserving spatial invariance

1 1 8 3

4 7 1 9

5 3 1 4

2 3 6 0

7 9

5 6

Max pooling with
2×2 filter and stride 2

Input feature map

Pooled feature map
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CNNs for classification

Input image Feature maps

Convolutions + Non-linearity Pooling

Fully connected 
layer

Feature maps
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CNNs for classification

Input image Convolution
+

Non-linearity

Pooling

•••

Convolution
+

Non-linearity

Pooling

Feature learning

Fully
connected

Flatten Softmax

Classification

•••
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CNNs for many applications

Convolution
+

Non-linearity

Pooling

•••

Convolution
+

Non-linearity

Pooling

Feature learning

Fully
connected

Flatten Softmax

Classification

•••

Organ segmentation

Lesion detection

Image denoising
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Deep Learning for 
Image Synthesis & 
Segmentation
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CNNs for many applications

Convolution
+

Non-linearity

Pooling

•••

Convolution
+

Non-linearity

Pooling

Feature learning

Fully
connected

Flatten Softmax

Classification

•••

Organ segmentation

Lesion detection

Image denoising
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CNNs for many applications
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Feature learning Classification

•••

Input image

Organ segmentation

Lesion detection

Image denoising

Convolutional block
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CNNs for image generation
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Input image Feature learning Reconstruction Reconstructed image

Latent space
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Encoder
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Latent space
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low dimensional representation
of the observed data
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Training autoencoders
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Generating images from scratch

Random 
noise
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Competing networks

𝑧

𝑦

Generator

Discriminator

𝑋 g
en

er
at

ed
𝑋 r

ea
l

Generator: turns noise into
an imitation of the data to
trick the discriminator

Discriminator: tries
to identify real from
generated data
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Generating new images
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Image translation

MRI CT
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Image translation with conditional GANs

𝑥
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real

D

𝑧

𝑐
fake

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017
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Image translation with conditional GANs

𝑥

"𝑥G

real

D

𝑧

𝑐
fake



Generative adversarial networks 59

Image translation with conditional GANs
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Image translation from paired or unpaired data

Wolterink et al., SASHIMI, 2017

2 J.M. Wolterink et al.

Paired data Unpaired data

MR

CT

Fig. 1: Left When training with paired data, MR and CT slices that are simul-
taneously provided to the network correspond to the same patient at the same
anatomical location. Right When training with unpaired data, MR and CT slices
that are simultaneously provided to the network belong to di↵erent patients at
di↵erent locations in the brain.

GAN, the synthesis CNN competes with a discriminator CNN that aims to dis-
tinguish synthetic images from real CT images. The discriminator CNN provides
feedback to the synthesis CNN based on the overall quality of the synthesized
CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for di↵erent purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined
by an adversarial discriminator network. To prevent the synthesis CNN from
generating images that look real but bear little similarity to the input image,
cycle consistency is enforced. That is, an additional CNN is trained to translate
the synthesized image back to the original domain and the di↵erence between
this reconstructed image and the original image is added as a regularization term
during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain
MR images. We show that training with pairs of spatially aligned MR and CT
images of the same patients is not necessary for deep learning-based CT synthe-
sis.

30 SASHIMI2017, 010, v2 (final): ’Deep MR to CT Synthesis using Unpaired Data’
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Image translation with conditional GANs

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

CT

GMRI→CT(MRI)

DCT

MRI

GMRI→CT
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Image translation with cycle GANs

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

CT

GMRI→CT(MRI)

DCT

MRI

GCT→MRI (CT)
GCT→MRI

GCT→MRI(GMRI→CT(MRI))

DMRI

GMRI→CT

GMRI→CT (GCT→MRI (CT))
MRI, GCT→MRI(GMRI→CT(MRI)) !,#

CT, GMRI→CT (GCT→MRI (CT)) !,#
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Structure of the generator:

• encoder-decoder
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Structure of the generator:

• U-Net

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)
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Convolutional Networks for Biomedical Image Segmentation

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)
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Neural Networks

• Perceptron = structural 
building block

• Stacking perceptrons to 
form neural networks
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CNNs Applications

• Convolutions for 
feature extraction

• Convolution → non-
linearity → pooling

• Stacking layers

• Classification
• Segmentation
• Synthesis
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Autoencoders GANs Conditional GANs

• Learn low dimensional 
latent space

• Competing generator 
and discriminator 
networks

Cycle GANs

ℒpixel

ℒpixel
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Deep Learning for 
Medical Imaging
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Historical techniques

Deep learning

Arndt et al., Fortschr Röntgenstr, 2021

Analytical reconstruction Iterative reconstruction
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Image reconstruction by domain-transform manifold learning

Zhu et al., Nature, 2018
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reconstruction with wavelet sparsifying transform18; and (4) mis-
aligned k-space (a commonplace sampling inaccuracy due to hardware 
limitations or physiologic effects) and the conventional inverse fast 
Fourier transform. Evaluation of the AUTOMAP network was per-
formed on brain magnetic resonance images selected from the Human 
Connectome Project (HCP)19, which were transformed to the sensor 
domain according to the four encoding schemes (see Methods for data 
preparation details) and with varying levels of additive white Gaussian 
noise introduced so that we could observe reconstruction performance 
in noisy conditions.

All reconstruction tasks employed the same network architecture and 
hyperparameters—only the training data differed at the network input 
and output. To demonstrate AUTOMAP’s generalizability in training 
dataset scope, all reconstruction tasks except the undersampled encod-
ing were trained from datasets derived entirely from photographs of 
natural scenes from ImageNet20 as schematically portrayed in Fig. 1b; 
for these acquisitions, the network was not exposed to any MRI or other 
medical images until the test phase (see Methods for data preparation 
and training details).

The results shown in Fig. 2 demonstrate the ability of AUTOMAP 
to reconstruct sensor-domain data across varying encoding acquisi-
tion strategies. We emphasize here that the reconstruction transforms 
emerged strictly from training on data samples, without higher-level 
knowledge (for example, mathematical transforms or domain rep-
resentations) introduced at any stage. To learn a new reconstruction 
for a  particular encoding acquisition, one simply needs to generate 
a training dataset with the encoding forward model. The ability of 
AUTOMAP to represent a variety of sophisticated transform functions 
with a single network architecture is grounded in the inherent universal 
approximation properties of nonlinear multilayer perceptron systems21.

Furthermore, AUTOMAP reconstructions exhibit superior noise 
immunity compared to those from conventional methods, as quantified 
by image signal-to-noise ratio and root-mean-squared error (RMSE) 
metrics (Fig. 2). Visual inspection of reconstructed images and error 
maps in Fig. 2 reveals that noise and reconstruction artefacts are dimin-
ished in AUTOMAP reconstructions compared to conventional recon-
structions: streaking artefacts and white noise amplification for iterative 

inverse-Radon22, noise amplification due to iterative reconstruction 
with NUFFT regridding of noisy samples23, structured artefacts 
from noisy undersampled compressed sensing reconstruction24, and 
Nyquist N/2 ghosting from misaligned sampling trajectories25. Additive 
Gaussian noise was not injected during training; the noise immunity we 
observe was not trained explicitly, or imposed by predictive noise mod-
elling, but rather emerged as a result of the manifold learning process 
extracting robust features of the data, leading to improvement in signal-
to-noise ratio during  reconstruction. This emphasis on modelling fea-
tures of the signal rather than the noise characteristics to achieve high 
performance in low-signal-to-noise-ratio regimes is consistent with the 
neural mechanisms underlying human visual perceptual learning26.

We next examined the hidden-layer activity of our AUTOMAP 
network during the feed-forward reconstruction process. We trained 
AUTOMAP using training data derived from either ImageNet, HCP 
brain images, or random-valued Gaussian noise without any real-world 
image structure. Each trained network was then used to reconstruct 
the fully sampled Cartesian k-space of a single brain image (Extended 
Data Fig. 2). The activation values of the hidden-layer FC2 (Fig. 1c) 
are plotted in Fig. 3a–c. As the training moves from general (Fig. 3a) to 
specific (Fig. 3c), we observe the hidden-layer activity exhibiting greater 
sparsity, indicating successful extraction of robust features27, consistent  
with the noise immunity observed in our experiments. We note that 
fully connected hidden-layer sparsity was not explicitly imposed 
(that is, not enforced by a penalty in the loss function), but emerged 
 naturally through the training process. A normalized histogram of the 
hidden-layer activations is shown in Fig. 3d. A representative set of the 
convolutional kernels applied to feature maps in layer C2 (Fig. 1c) is 
shown in Fig. 3h. Processing by the convolutional layers is similar to 
that of compressed sensing, except that instead of assuming an explicit 
sparsifying transform (for example, wavelet), AUTOMAP simultane-
ously learns a sparse convolutional domain and its sparse representa-
tions through a joint optimization (see Methods for details).

We then studied the weight parameters of each trained network using 
a t-distributed stochastic neighbour embedding (t-SNE) analysis28  
(Fig. 3e–g), which embeds a high-dimensional dataset into a low- 
dimensional space for visualization. Here we visualize the spatial 
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Figure 1 | Schematic representations of AUTOMAP image 
reconstruction. a, Conventional image reconstruction is implemented 
with sequential modular reconstruction chains composed of handcrafted 
signal processing stages that may include discrete transforms (for example, 
Fourier, Hilbert or Radon), data interpolation techniques, nonlinear 
optimization, and various filtering mechanisms. AUTOMAP replaces this 
approach with a unified image reconstruction framework that learns the 
reconstruction relationship between sensor and image domain without 
expert knowledge. b, A mapping between sensor domain and image 
domain is determined via supervised learning of sensor (top) and image 

(bottom) domain pairs. The training process implicitly learns a low-
dimensional joint manifold ×X Y  over which the reconstruction function 

φ φ= −! !f x g x( ) ( )y x
1  is conditioned. c, AUTOMAP is implemented with a 

deep neural network architecture composed of fully connected layers (FC1 
to FC3) with hyperbolic tangent activations, followed by convolutional 
layers with rectifier nonlinearity activations that form a convolutional 
autoencoder. Our network contains m1 and m2 convolutional feature maps 
at C1 and C2 respectively. The convolution and deconvolution operations 
are labelled ‘conv.’ and ‘deconv.’, respectively. The dimensionality of the 
input to the network is n ×  n. See Methods for model architecture details.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Image reconstruction by domain-transform manifold learning

Zhu et al., Nature, 2018
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Image reconstruction by domain-transform manifold learning

Zhu et al., Nature, 2018

LETTER RESEARCH

Extended Data Figure 5 | Reconstruction of PET scanner data. a–d, Human FDG PET sinogram data (a) was reconstructed using (b) filtered back 
projection (FBP), (c) OP-OSEM and (d) AUTOMAP.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 5 | Reconstruction of PET scanner data. a–d, Human FDG PET sinogram data (a) was reconstructed using (b) filtered back 
projection (FBP), (c) OP-OSEM and (d) AUTOMAP.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Image denoising using a cGAN

Generator
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Generator: turns a
noisy image into a
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Image denoising using a cGAN

Ran et al., Medical Image Analysis, 2019

Original noisy MRI Denoised MRI

178 M. Ran, J. Hu and Y. Chen et al. / Medical Image Analysis 55 (2019) 165–180 

Fig. 14. Denoised result on real T1w human brain data. 

Fig. 15. Denoised result on real T1w mouse brain data. 
applications without prior knowledge about the noise level, train- 
ing the DL model with a mix of possible noise levels is one of the 
potential solutions. The performance of RED-WGAN-m is slightly 
worse than traditional methods at a low noise level (1%). The 
possible reason is that when simultaneously training with higher 
noise levels, the risk that the network may mistreat the noise as 
details from a low noise level is increased. 

It also can be observed that the model RED-WGAN-n trained 
with a single noise level of n% can efficiently cover a certain 
noise range. For example, RED-WGAN-9, which was trained with 
a 9% noise level, has better scores on the testing set with 7–
13% noise levels. This can also be seen as solid evidence for the 
generalization and robustness of our model, as most traditional 
methods also need to adjust the parameters to fit the different 
noise levels. 
3.5.2. Real MR data 

The propose of this subsection is to verify the effectiveness of 
the proposed model on real noisy clinical data. The experiments 
were conducted on two brain MR image volumes, which belong to 
a human being and a mouse, respectively. The human brain image 
was acquired on a Siemens (Erlangen, Germany) Trio Tim 3T scan- 

ner using an MP-RAGE sequence with TR = 2400 ms, TE = 2.01 ms, 
TI = 10 0 0 ms, flip angle = 8, voxel resolution = 0.8 × 0.8 × 0.8 mm 3 
and 256 × 256 × 224 voxels. The mouse brain image was acquired 
on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 
TR = 1200, an effective TE = 62.5 ms, a RARE factor = 16, a voxel 
resolution = 0.1 × 0.1 × 0.1 mm 3 and 225 × 192 × 96 voxels. Due to 
the lack of knowledge about the noise level in the real data, we ex- 
perimentally selected RED-WGAN models trained with 1% and 4% 
noise for human and mouse data, respectively. Since ground truth 
images are unavailable, the SNR was measured in a homogeneous 
region and used as the quantitative metric. The results are shown 
in Figs. 14 and 15 . In Fig. 14 , it is clear that the traditional meth- 
ods cannot eliminate all the noise in the brain, especially in the 
epencephalon and brainstem, but RED-WGAN can efficiently sup- 
press most of the noise, even near the epencephalon and brain- 
stem, which are indicated by red arrows. It is noted that a certain 
level of noises in homogeneous areas can be noticed in Fig. 14 (d). 
In Fig. 15 , the noise is much heavier than Fig. 14 . All the methods 
can remove most of the noise, but the results of BM4D and PRI- 
NLM3D look oversmoothed, and RED-WGAN obtained better visual 
effects and preserved more details. Furthermore, RED-WGAN ob- 
tained a better SNR in both cases. 
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and 256 × 256 × 224 voxels. The mouse brain image was acquired 
on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 
TR = 1200, an effective TE = 62.5 ms, a RARE factor = 16, a voxel 
resolution = 0.1 × 0.1 × 0.1 mm 3 and 225 × 192 × 96 voxels. Due to 
the lack of knowledge about the noise level in the real data, we ex- 
perimentally selected RED-WGAN models trained with 1% and 4% 
noise for human and mouse data, respectively. Since ground truth 
images are unavailable, the SNR was measured in a homogeneous 
region and used as the quantitative metric. The results are shown 
in Figs. 14 and 15 . In Fig. 14 , it is clear that the traditional meth- 
ods cannot eliminate all the noise in the brain, especially in the 
epencephalon and brainstem, but RED-WGAN can efficiently sup- 
press most of the noise, even near the epencephalon and brain- 
stem, which are indicated by red arrows. It is noted that a certain 
level of noises in homogeneous areas can be noticed in Fig. 14 (d). 
In Fig. 15 , the noise is much heavier than Fig. 14 . All the methods 
can remove most of the noise, but the results of BM4D and PRI- 
NLM3D look oversmoothed, and RED-WGAN obtained better visual 
effects and preserved more details. Furthermore, RED-WGAN ob- 
tained a better SNR in both cases. 
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Example of 2D brain MRI

0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.
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resolution, resulting in a HR volume. Details can be found in [23], with
a modification that the anti-ringing filter is changed to a Fermi filter to
better mimic the behavior in scanners. SMORE(2D) uses the same
general concept as SMORE(3D), but adds a self anti-aliasing (SAA)
network trained with aliased axial slices. The aliased slices are created
by first applying the filter h(x), which in this case mimics the through-
plane slice profile, and then a downsampling/upsampling sequence that
produces aliasing at the same level as that found in the through-plane
direction. We first apply the trained SAA network on sagittal slices to
remove aliasing in the sagittal plane. We then apply the trained SSR
network on the coronal plane to both remove aliasing in the coronal
plane and improve through-plane resolution, resulting in an anti-
aliased HR volume. Details can be found in [8]. For both SMORE(3D)
and SMORE(2D), we only apply the trained networks in one orientation
instead of two (or more) as described in our previous conference papers
[8,23]. This reduces computation time from 20min to 15min for
SMORE(3D), and from 35min to 25min for SMORE(2D) on a Telsa K40
GPU, with only a minor impact on performance. Also we omit SAA
network and directly apply SSR network to the LR image to further
reduce time cost from 25min to 15min for SMORE(2D) if the ratio r
between through-plane and in-plane resolution is< 3, since the
aliasing is empirically not severe in this case.

The SAA and SSR neural networks currently used in SMORE are
both implemented using the state-of-the-art super-resolution EDSR
network [9]. In this paper, we implement patch-wise training with
randomly extracted 32× 32 patches. Training on small patches re-
stricts the effect receptive field [28] to avoid structural specificity so
that this network can better preserve pathology. It also reduces spatial
correlation of the training data, which can accelerate convergence in
theory [29]. To reduce training time, the networks are fine-tuned from
pre-trained models that were trained from arbitrary data. When ap-
plying the trained networks, we apply them to entire coronal or sagittal
slices (depending on whether it is SAA or SSR) rather than just 32× 32
patches. This is possible since EDSR is a fully convolutional network
(FCN) which allows an arbitrary input size [30].

2.2. Application to visual enhancement for MS lesions

In this experiment, we test whether super-resolved T2 FLAIR MR
images can give better visualization of white matter lesions in the brain
than the acquired images. The T2 Flair MR images were acquired from
multiple sclerosis (MS) subjects using a Philips Achieva 3 T scanner
with a 2D protocol and the following parameters:
0.828× 0.828× 4.4mm, TE=68ms, TR=11 s, TI= 2.8 s, flip
angle= 90°, turbo factor= 17, acquisition time=2m56 s. We per-
formed cubic b-spline interpolation, JogSSR [22], and SMORE(2D) on

the data using a 0.828× 0.828× 0.828mm digital grid. We show a
visual comparison on the regions of white matter lesions in axial, sa-
gittal, and coronal slices for the three methods. We also plot 1D in-
tensity profiles of the three methods across selected paths through
different lesions.

2.3. Application to visual enhancement of scarring in cardiac left
ventricular remodeling

In this experiment, we test whether super-resolved images can give
better visualization of the scarring caused by left ventricular re-
modeling after myocardial infarction than the acquired images. We
acquired two T1-weighted MR images from an infarcted pig, each with
a different through-plane resolution. One image, which serves as the HR
reference image, was acquired with resolution equal to
1.1× 1.1× 2.2mm, and then it was sinc interpolated on the scanner
(by zero padding in k-space) to 1.1× 1.1× 1.1 m. The other image was
acquired with resolution equal to 1.1× 1.1× 5mm. Both of these
images were acquired with a 3D protocol, inversion time=300ms, flip
angle= 25°, TR=5.4ms, TE= 2.5ms, and GRAPPA acceleration
factor R=2. The HR reference image has a segmented centric phase-
encoding order with 12 k-space segments per imaging window (heart
beat), while the LR subject image has 16 k-space segments.

In our experiment, we performed sinc interpolation, JogSSR, and
SMORE(3D) on the 1.1× 1.1× 5.0 mm data using a
1.1× 1.1× 1.1mm digital grid. These images were then rigidly re-
gistered to the reference image for comparison. We are interested in the
regions of thinning layer of midwall scar between the endocardial and
epicardial layers of normal myocardium and the thin layer of normal
myocardium between the scar and epicardial fat. These two regions of
interest are cropped and zoomed to show the details.

2.4. Application to multi-view reconstruction

In this experiment, we test whether a super-resolved image from a
single acquisition can give a comparable result to a multi-view super-
resolution image reconstructed from three acquisitions. MR images of
the tongue were acquired from normal speakers and subjects who had
tongue cancer surgically resected (glossectomy). Scans were performed
on a Siemens 3.0 T Tim Treo system using an eight-channel head and
neck coil. A T2-weighted Turbo Spin Echo sequence with an echo train
length of 12, TE= 62ms, and TR=2500ms was used. The field-of-
view (FOV) was 240× 240mm with a resolution of 256× 256. Each
dataset contained a sagittal, coronal, and axial stack of images con-
taining the tongue and surrounding structures. The image size for the
high-resolution MRI was 256× 256× z (z ranges from 10 to 24) with

Fig. 1. Overview of SMORE. Workflow of SMORE for MRI acquired with 3D protocols and 2D protocols, referred as SMORE(3D) and SMORE(2D). They are simplified
version of algorithms described in our previous conference papers [8,23].
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datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.
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Fig. 5. Comparison between SMORE(2D) and multi-view reconstruction for a tongue tumor subject: Axial, Sagittal, and Coronal views of the tongue region in cubic b-
spline interpolation and SMORE(2D) results for a single coronal acquisition, and multi-view reconstructed image [2] using three acquisitions. The arrows point out
the bright looking scar tissue from a removed tumor.

Fig. 6. Coronal views of brain ventricle parcellation on an NPH subject: The volumes with digital resolution of 0.8× 0.8× 0.8mm that resolved from
0.8× 0.8× 3.856mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the interpolated 0.8× 0.8× 0.9mm HR image. The patches in blue
boxes are zoomed in the second row to show details of the 4th ventricle. The last row shows the VParNet [33] parcellation results and the manual labeling for the 4th
ventricle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Interpolation SMORE HR

Thickness Interpolation SMORE HR (0.9 mm)

1.205 mm 0.969 0.9696 0.9699

1.928 mm 0.9665 0.9690

3.0125 mm 0.9602 0.9675

3.856 mm 0.9524 0.9632

4.82 mm 0.9408 0.9607

Quantitative results
Dice score (overlap between manual and automatic
segmentations)
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Segmentation with a sliding-window CNN

Zhang et al., NeuroImage, 2015
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Segmentation with a CNN

Zhang et al., NeuroImage, 2015

Input images
(T1w, T2w, FA)

Manual segmentations 
(CSF, GM, WM)

CNN segmentations 
(CSF, GM, WM)



Segmentation of anatomical structures 85

Segmentation with a U-Net

2

copy and crop

input
image

tile

output 
segmentation 
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)
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Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands
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nnU-Net (‘no new net’)
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Segmentation with a sliding-window CNN
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Unsupervised anomaly segmentation in brain MR images

162 C. Baur et al.

Fig. 1. The proposed anomaly detection concept at a glance. A simple subtraction of
the reconstructed image from the input reveals lesions in the brain.

pathological appearances [17]. Given the constrained anatomical variability of
the healthy brain, an alternative approach is to model the distribution of healthy
brains, and both detect and delineate pathologies as deviations from the norm.
Here, we formulate the problem of brain lesion detection and delineation as
an unsupervised anomaly detection (UAD) task based on state-of-the-art deep
representation learning, requiring only a set of normal data and no segmentation-
labels at all. The detection and delineation of pathologies are thereby obtained
from a pixel-wise reconstruction error (Fig. 1). To the best of our knowledge, this
is the first application of deep convolutional representation learning for UAD in
brain MR images which operates on entire MR slices at full resolution.

Related Work. In the medical field, many efforts have been made towards
UAD, which can be grouped into methods based on statistical modeling, content-
based retrieval or clustering and outlier detection [17]. Weiss et al. [19] employed
Dictionary Learning and Sparse Coding to learn a representation of normal brain
patches in order to detect MS lesions. Other unsupervised MS lesion segmen-
tation methods rely on thresholding and 3D connected component analysis [6]
or fuzzy c-means clustering with topology constraints [16]. Notably, only few
approaches have been made towards deep learning based UAD. Vaidhya et al.
[18] utilized unsupervised 3D Stacked Denoising Autoencoders for patch-based
glioma detection and segmentation in brain MR images, however only as a pre-
training step for a supervised model. Recently, Schlegl et al. [13] presented the
AnoGAN framework, in which they create a rich generative model of normal reti-
nal Optical Coherence Tomography (OCT) patches using a Generative Adver-
sarial Network (GAN). Assuming that the model cannot properly reconstruct
abnormal samples, they classify query patches as either anomalous or normal by
trying to optimize the latent code of the GAN based on a novel mapping score,
effectively also leading to a delineation of the anomalous region in the input
data. In earlier work, Seeböck et al. [14] trained an Autoencoder and utilized
a one-class SVM on the compressed latent space to distinguish between normal
and anomalous OCT patches. A plethora of work in the field of deep learn-
ing based UAD has been devoted to videos primarily based on Autoencoders
(AEs) due to their ability to express non-linear transformations and the ability
to detect anomalies directly from poor reconstructions of input data [2,4,12].

Baur et al., MICCAI Brainlesion Workshop, 2019
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(a) Dense Autoencoder dAE (b) Spatial Autoencoder sAE

(c) Dense Variational Autoencoder dVAE (d) Spatial Variational Autoencoder sVAE

Fig. 3. An overview of different Autoencoder frameworks

Anomaly Detection. Once a model is trained, anomalies are delineated by
(1) computing the pixelwise !1-distance between an input image and its recon-
struction, (2) applying a median filter to the resulting residual image to remove
tiny structures and (3) thresholding the filtered image to obtain a binary seg-
mentation.

3 Experiments and Results

Given the variants of AE and our proposed framework, we investigate (i) whether
autoencoding deep networks can be utilized in general to learn to reconstruct
complex brain MR images, (ii) how the dimensionality of z affects the reconstruc-
tion capabilities of a model, (iii) the effect of constraining z to be well structured
and (iv) if adversarial training enhances the quality of reconstructed images. In
the following paragraphs we first introduce the dataset, provide implementa-
tional details and then describe the experiments.

Datasets. For our experiments, we use an inhouse dataset which provides a rich
variety of images of healthy brain anatomy - a necessity for our approach. The
dataset consists of FLAIR images from 83 subjects with healthy brains (training)
and 49 subjects with MS lesions (testing) acquired with a Philips Achieva 3T
scanner. All images have been co-registered to the SRI24 ATLAS [10] to reduce
appearance variability and skull-stripped with ROBEX [5]. The resulting images
have been denoised using CurvatureFlow [15] and normalized into the range [0,1].
In order to obtain sufficient reconstruction quality when training the models, it
was necessary to narrow the view on a region of the brain and thus, per subject,
we focused on 20 consecutive axial slices (256 × 256px) around the midline.

Implementation. We build upon the basic architecture proposed in [8] and per-
form only minor modifications affecting the latent space (see Table 1). Across
different architectures we keep the model complexity of the encoder-decoder
part the same to allow for a valid comparison. All models have been trained for
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Fig. 1. The proposed anomaly detection concept at a glance. A simple subtraction of
the reconstructed image from the input reveals lesions in the brain.

pathological appearances [17]. Given the constrained anatomical variability of
the healthy brain, an alternative approach is to model the distribution of healthy
brains, and both detect and delineate pathologies as deviations from the norm.
Here, we formulate the problem of brain lesion detection and delineation as
an unsupervised anomaly detection (UAD) task based on state-of-the-art deep
representation learning, requiring only a set of normal data and no segmentation-
labels at all. The detection and delineation of pathologies are thereby obtained
from a pixel-wise reconstruction error (Fig. 1). To the best of our knowledge, this
is the first application of deep convolutional representation learning for UAD in
brain MR images which operates on entire MR slices at full resolution.

Related Work. In the medical field, many efforts have been made towards
UAD, which can be grouped into methods based on statistical modeling, content-
based retrieval or clustering and outlier detection [17]. Weiss et al. [19] employed
Dictionary Learning and Sparse Coding to learn a representation of normal brain
patches in order to detect MS lesions. Other unsupervised MS lesion segmen-
tation methods rely on thresholding and 3D connected component analysis [6]
or fuzzy c-means clustering with topology constraints [16]. Notably, only few
approaches have been made towards deep learning based UAD. Vaidhya et al.
[18] utilized unsupervised 3D Stacked Denoising Autoencoders for patch-based
glioma detection and segmentation in brain MR images, however only as a pre-
training step for a supervised model. Recently, Schlegl et al. [13] presented the
AnoGAN framework, in which they create a rich generative model of normal reti-
nal Optical Coherence Tomography (OCT) patches using a Generative Adver-
sarial Network (GAN). Assuming that the model cannot properly reconstruct
abnormal samples, they classify query patches as either anomalous or normal by
trying to optimize the latent code of the GAN based on a novel mapping score,
effectively also leading to a delineation of the anomalous region in the input
data. In earlier work, Seeböck et al. [14] trained an Autoencoder and utilized
a one-class SVM on the compressed latent space to distinguish between normal
and anomalous OCT patches. A plethora of work in the field of deep learn-
ing based UAD has been devoted to videos primarily based on Autoencoders
(AEs) due to their ability to express non-linear transformations and the ability
to detect anomalies directly from poor reconstructions of input data [2,4,12].

Baur et al., MICCAI Brainlesion Workshop, 2019
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Fig. 4. 1st Column: a selected axial slice and its ground-truth segmentation; Succeeding
columns show the filtered difference images (top row) and the resulting segmentation
augmented to the input image (bottom row) for the following models defined in Table 1
(in order): dAE, sAE3, sAE-GAN, sVAE and sVAE-GAN.

150 epochs in minibatches of size 8, using a learning rate of 0.001 for the recon-
struction objective and 0.0001 for the adversarial training on a single nVidia
1080Ti GPU with 8GB of memory. Thanks to the reconstruction objective, the
training of both the AE-GAN and VAE-GAN was very stable and none of the
models collapsed.

Evaluation Metrics. We measure the performance of the different models by the
mean and standard deviation of the Dice-Score/F1-Score across different testing
patients, the Area under the Precision-Recall Curve (AUPRC) as well as the
average segmentation time per slice.

3.1 Anomaly Detection

Fig. 5. Realistic (left) and
unrealistic (right) samples
generated with AnoGAN.

We first trained normal convolutional AE & VAE
with a dense latent space of dimensionality 512
and found that, besides not being capable of recon-
structing brain lesions, they also lack the capability
to reconstruct fine details such as the brain convo-
lutions (Fig. 4). Similar to [2,4], we then make the
architecture fully convolutional to ensure that spa-
tial information is not lost in the bottleneck of the
model. Notably, this heavily increases the dimen-
sionality of z. We thus vary the number of feature

maps of the spatial AE to investigate the impact on reconstruction quality of
normal and anomalous samples. We identify z = 16× 16× 64 as a good parame-
terization and use it in further experiments on a spatial VAE, a spatial AE-GAN
[9] and a spatial VAE-GAN. Further, we also trained an AnoGAN which we had
to stop and evaluate after 82 epochs of training due to occuring instabilities (see
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What is Alzheimer’s disease?

• Most common cause of dementia

• Disorder caused by abnormal brain changes

• Trigger decline in cognitive abilities, severe enough to impair daily life

• Affect behaviour, feelings and relationships

• Progressive disease

Mild cognitive 
impairment 

AD dementia

Cognitively normal

Future AD 
patients
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Imaging in Alzheimer’s disease
• Structural magnetic resonance imaging (MRI) to detect atrophy

Disease progression

Cognitively normal Alzheimer’s diseaseMild cognitive impairment
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ML/DL for dementia diagnosis & prognosis

• A very active field of research
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Classification of Alzheimer’s disease using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

3D subject-level CNN

3D Patch/ROI-based CNN

2D slice-level CNN

SVM

Bal. acc. (AD vs CN): 
85% 
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Classification of Alzheimer’s disease using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

3D subject-level CNN

3D Patch/ROI-based CNN

2D slice-level CNN

SVM

Bal. acc. (AD vs CN): 
85% 

Bal. acc. (AD vs CN):  
86% (patch) / 85% (ROI) 

Bal. acc. (AD vs CN): 
74%

Bal. acc. (AD vs CN): 
87% 
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Computer-aided diagnosis of dementia in a clinical data 
warehouse

Data set Task
Classification strategy

CNN SVM

Clinical
D vs NDNL 63.2 61.9

D vs NDL 67.5 64.6

Research AD vs CN 85.3 86.8

Balanced accuracy (%)

Bottani et al., Under revision at Medical Image Analysis · hal-03656136 

Balanced accuracy ~20 percent points lower than when training/testing on research data

D: dementia, 
NDNL: no dementia and no lesions,
NDL: no dementia with lesions
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Identification and subtyping of intracranial haemorrhage (ICH)

Ye et al., European Radiology, 2019
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Deep learning for the diagnosis and prognosis of AD

• ‘Diagnostic’ classification task
o Differentiate cognitively normal (CN) subjects from patients with AD: 

CN vs AD

o Not clinically relevant but useful when developing algorithms

• ‘Predictive’ classification task
o Different patients with mild cognitive impairment (MCI) that will stay 

stable (sMCI) from the ones that will progress to AD dementia (pMCI): 
sMCI vs pMCI

o Clinically relevant but more difficult



Fixed-time classification 103

Classification of mild cognitive impairment using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

3D subject-level CNN

3D Patch/ROI-based CNN

2D slice-level CNN

SVM

Bal. acc. (sMCI vs pMCI): 
73% 

Bal. acc. (sMCI vs pMCI):  
70% (patch) / 74% (ROI) 

Bal. acc. (sMCI vs pMCI): 
–

Bal. acc. (sMCI vs pMCI): 
76% 
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Generation of images that mimic disease progression

Ravi et al., MICCAI, 2019

Degenerative Adversarial NeuroImage Nets 167

(iii) intensity normalisation to zero mean and unit standard deviation. Images
where pre-processing failed were not included in the training set.

Fig. 2. Pipeline used to obtain the proposed image biomarkers based on regional-based
intensity progression.

2.2 Conditional Deep Autoencoder

A CDA is an extension of the Deep Autoencoder (DA) with the ability to inte-
grate conditional variables inside the generator G. The advantage of training a
single end-to-end CDA over training separate DAs is that it avoids overfitting
individual groups when longitudinal data are missing. For the architecture of E
and G we follow [8]. The output of the encoder E is a feature vector z ∈ Rs

that preserves the brain morphology of the current participant. The output of
G are synthetic images defined as ga = G(E(x), a, d). The aim of G is to learn
the mapping between the linear transition of the latent vector conditioned on a
and d and the non-linear transition in the original manifold.

2.3 Adversarial Training

Again following [8], DaniNet includes two discriminator networks that are trained
adversarially with the CDA. The first discriminator Dz guides E to generate z
with a uniform distribution U to ensure temporal smoothness, as demonstrated
in [8]. Specifically, Dz is trained to distinguish the vector generated by the
encoder E from samples extracted from U. On the other side, E is trained in a
zero-sum game with the purpose to fool Dz. The objective function used for this
adversarial training is

min
E

max
Dz

Ez∗ [ logDz(z∗)] + Ex[1 − logDz(E(x))], (1)
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Generation of images that mimic disease progression

Ravi et al., MICCAI, 2019

Degenerative Adversarial NeuroImage Nets 171

Fig. 3. Visual results obtained by different configurations of DaniNet on MRI slices
from three participants in the test set.

Fig. 4. Neurodegeneration simulation of a 69-year old ADNI participant.

set of images, the user was asked to select the closest synthetic image to y.
Results from the survey confirm that DaniNet is a considerable improvement of
the baseline approach. The medical imaging experts selected the configuration
P -C-T 26±5 (mean ± std) times (72 ± 14%), the configuration C-T 7 ± 4 times
(19 ± 11%), and the baseline 1 ± 1 times (3 ± 3%). For only 2 ± 3 outputs
(6 ± 8%) the users were not happy with any of the generated synthetic images.

4 Conclusion and Future Work

We have proposed and evaluated (quantitatively and qualitatively) a novel deep-
learning framework that is able to learn how to emulate the effect of neurodegen-
erative disease progression on structural MRI. The framework produces person-
alised, realistic output images through a combination of biological constraints,
transfer learning, and conditioning upon both fixed and variable non-imaging
characteristics. To the best of our knowledge, we are the first to propose a simula-
tor that imitates realistic neurodegeneration by imposing biological constraints.
In future work we will extend the framework to simulate entire 3D-MRI with
the aid of low-memory techniques. Additionally, focal brain pathologies, such

Neurodegeneration simulation of a 69-year old ADNI participant
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Challenges that currently prevent bringing DL to the clinic

• DL usually requires a large amount of data, which can be hard to collect 
for some medical applications.

• Research cohort specificities may prevent the application of models 
trained on such data to clinical cohorts.

• Algorithms are often black boxes, with poor interpretability of the 
decision-making process.

• Validating models accurately is crucial as the algorithms can very easily 
overfit the training data.
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