

www.aramislab.fr ninonburgos.com

> ESIA -15 mai 2023

IA pour l'imagerie médicale :

de l'acquisition des images au pronostic

Ninon Burgos Chargée de recherche CNRS & Chaire PR[AI]RIE Institut du Cerveau, Paris

Deep learning for medical imaging

Medical imaging

X-ray computed tomography

Positron emission tomography

Radiotracer (molecule marked with a radioactive atom) The radioactive atom emits positrons which, when they meet electrons, create pairs of photons. Photon pairs are counted when they reach the detectors simultaneously.

Positron emission tomography

Whole-body PET

Case courtesy of Dr Bruno Di Muzio (rID: 65743), Radiopaedia.org

Magnetic resonance imaging

Protons in the body

Protons in the MRI scanner, aligned with the magnetic field

Protons subjected to the MRI magnetic field when a radio frequency pulse is applied

Magnetic resonance imaging

Case courtesy of Dr Mostafa El-Feky (rID: 79193), Dr Pierre VIala (rID: 27366) and Dr Mohammad A. ElBeialy (rID: 52084), Radiopaedia.org

Neural networks

Forward propagation in a neuron

Non-linear activation function

Inputs Weights Sum Non-Linearity Output

Forward propagation in a neuron

Inputs Weights Sum Non-Linearity Output

Importance of non-linear activation functions

Linear activation functions \rightarrow linear decisions

Non-linear activation functions \rightarrow arbitrarily complex decisions

Simplified notation

Multi output neural network with dense layers

 $z_i = w_{0,i}^{(1)} + \sum_{j=1}^{n} x_j w_{j,i}^{(1)}$

 $\hat{y}_i = h\left(w_{0,i}^{(2)} + \sum_{j=1}^{a_1} z_j w_{j,i}^{(2)}\right)$

Inputs Hidden Output

 $z_2 = w_{0,2}^{(1)} + \sum_{j=1}^m x_j w_{j,2}^{(1)} \mathbf{x}$

 $= w_{0,2}^{(1)} + x_1 w_{1,2}^{(1)} + x_2 w_{2,2}^{(1)} + x_m w_{m,2}^{(1)}$

Simplified notation

Stacking layers

Is this subject healthy?

Is this subject healthy?

Loss: $l(f(x^{(i)}; W), y^{(i)})$

Predicted Actual

Is this subject healthy?

Loss optimisation

• Find the network weights that achieve the lowest loss

Training Neural Networks

Gradient descent

Algorithm

- 1. Initialise weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence
 - a. Compute gradient $\frac{\partial J(W)}{\partial W}$
 - b. Update weights $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 3. Return weights

Computing gradients: backpropagation

$$\frac{\partial J(W)}{\partial w_2} = \frac{\partial J(W)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(\boldsymbol{W})}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial z_1} \times \frac{\partial z_1}{\partial w_1}$$

Is this subject healthy?

Convolutional neural networks

Using an image as input of a neural network of the science of the

Image = matrix of numbers

0	0	0	0	0	0	1	2	4	4	6	4	5	3	5	4	3	5	5	5	4	5	4	3	1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	1	1	1	0	0	0	-1	-2	-1	-1	-1	-1	0	1	1	1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	1	1	-1	-2	0	7	16	20	24	29	30	32	33	25	14	3	-1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	-1	0	14	33	50	49	44	42	38	38	35	34	33	37	45	47	27	1	0	1	1	1	1	1	1
1	1	1	0	1	1	-1	11	45	51	39	37	33	33	49	61	57	60	70	61	49	46	33	46	51	9	-1	1	1	1	1	1
1	1	1	1	1	-1	18	46	33	34	53	63	77	74	79	84	74	82	83	85	73	74	68	37	40	58	16	-1	1	1	1	1
1	1	1	1	-1	18	40	37	61	70	87	89	88	87	83	83	87	86	86	88	73	81	78	72	35	33	54	6	0	1	1	1
1	1	1	0	8	39	39	70	87	86	89	90	89	89	79	79	89	84	87	89	85	76	79	66	55	36	44	30	-2	1	1	1
1	1	1	0	38	38	71	84	87	84	81	80	82	84	83	92	92	85	83	84	79	75	84	70	81	56	31	45	4	0	1	1
1	1	0	12	43	54	82	83	84	76	80	89	91	90	93	94	94	91	83	80	82	90	90	86	76	78	46	39	22	-1	1	1
1	1	-2	28	42	64	83	81	75	82	93	91	87	88	84	79	77	78	93	94	83	83	87	92	88	73	74	36	41	2	1	1
1	1	-1	35	46	79	83	83	78	92	90	67	82	87	87	85	85	70	67	90	95	89	92	89	76	70	86	50	37	16	-1	1
1	0	7	52	44	73	87	82	83	88	91	81	87	94	94	91	92	91	81	69	93	96	86	81	75	86	85	63	35	31	-1	1
1	-1	15	63	26	75	88	88	86	85	90	90	85	92	95	93	91	90	89	84	93	89	81	86	90	90	81	83	38	37	1	1
1	0	7	61	20	27	58	77	83	83	81	79	84	84	84	91	92	87	80	88	85	86	86	86	88	90	88	85	46	39	4	1
1	1	0	38	74	21	19	41	43	46	51	67	67	68	66	79	90	73	71	79	78	83	86	89	90	90	87	85	53	36	3	1
2	1	4	17	36	30	27	10	7	10	12	44	106	96	74	71	83	77	82	86	81	78	78	80	87	82	82	83	44	33	1	1
0	4	25	41	40	30	36	13	5	3	5	12	53	106	87	55	85	89	87	94	88	85	82	78	75	74	76	57	39	21	-1	1
13	29	49	57	37	38	35	26	12	14	29	16	20	64	68	48	67	85	86	92	92	91	87	83	80	73	40	26	48	3	1	3
50	50	66	77	50	39	21	25	27	15	33	50	50	57	39	37	39	53	76	87	89	89	88	85	84	56	28	55	27	-1	0	19
26	20	23	46	44	38	40	39	47	50	40	35	72	77	62	54	41	52	83	85	86	86	85	75	52	37	76	57	1	0	1	6
-1	29	58	64	39	37	43	36	40	41	30	19	59	76	68	55	44	58	72	73	72	65	54	52	52	73	76	20	-1	1	1	1
-1	27	73	73	29	47	50	47	72	66	36	45	58	69	65	45	51	61	89	61	60	62	75	71	75	73	58	1	1	2	2	1
-1	27	72	36	26	54	69	75	77	79	79	73	70	70	62	46	48	63	64	57	70	72	69	64	73	77	28	-2	1	1	1	1
0	23	46	46	70	74	71	71	72	73	74	73	66	64	61	42	38	59	65	57	69	67	63	69	68	67	5	1	1	1	1	1
-1	44	68	39	61	62	61	63	65	69	75	73	73	67	62	47	45	46	49	60	69	61	63	67	69	40	-2	1	1	1	1	1
-1	20	82	33	44	64	63	62	61	62	73	73	62	67	62	50	57	53	46	56	60	56	61	65	67	20	-1	1	1	1	1	1
1	5	56	42	20	60	70	64	60	61	64	68	41	50	63	47	43	45	38	53	50	51	61	61	55	8	0	1	1	1	1	1
-1	18	58	39	27	51	67	60	55	60	59	60	35	29	58	48	44	46	40	54	53	49	59	56	42	2	1	1	1	1	1	1
-1	24	57	35	23	46	57	57	56	58	55	55	37	31	57	47	39	39	40	51	52	49	56	53	30	-1	1	1	1	1	1	1
0	8	44	30	30	48	50	49	50	49	43	49	47	26	49	37	33	40	34	45	46	46	47	44	22	0	2	1	1	1	1	1
0	0	5	17	21	24	25	24	27	26	26	23	13	12	27	23	21	24	26	28	28	30	25	25	13	0	1	0	0	0	0	0

27

Fully connected neural network

ARAMIS

BRAIN DATA SCIENCE

-AB

28

Using an image as input of a neural network ARAMIS LAB 29

Using spatial features

Idea: connect patches of input to neurons in hidden layer

Using spatial features

• Slide patch window across input image

30

- Weight pixels inside the patch
- Apply weighted summation
- \rightarrow Convolution

The convolution operation

- Slide the filter over the input image
- Element-wise multiply
- Add the outputs

ARAMIS

31

Image

Filter

The convolution operation

- Slide the filter over the input image
- Element-wise multiply
- Add the outputs

 $1 \times 1 + 1 \times 0 + 1 \times 1$ $+ 0 \times 0 + 1 \times 1 + 1 \times 0$ $+ 0 \times 1 + 0 \times 0 + 1 \times 1$ = 4

ARAMIS

32

Image

Filter

Feature map

The convolution operation

- Slide the filter over the input image
- Element-wise multiply
- Add the outputs

 $1 \times 1 + 1 \times 0 + 0 \times 1$ $+ 1 \times 0 + 1 \times 1 + 1 \times 0$ $+ 0 \times 1 + 1 \times 0 + 1 \times 1$ = 3

ARAMIS

33

Filter

Feature map

The convolution operation

- Slide the filter over the input image
- Element-wise multiply
- Add the outputs

 $1 \times 1 + 1 \times 0 + 1 \times 1$ $+ 1 \times 0 + 1 \times 1 + 0 \times 0$ $+ 1 \times 1 + 0 \times 0 + 0 \times 1$ = 4

Feature map

ARAMIS

Different filters = different feature maps

Original image

ARAMIS LAB

35

Vertical edge detection

Horizontal edge detection

Convolutional neural networks

CNNs for classification

Convolutional layer

Spatial arrangement of output volume

Layer Dimensions:

h×w×d
h & w = spatial dimensions
d = number of filters

Introducing non-linearity

Rectified linear unit (ReLU)

Black: negative values - White: positive values

Pooling

• Reduce dimensionality while preserving spatial invariance

Input feature map

Max pooling with 2×2 filter and stride 2

Pooled feature map

Pooling

• Reduce dimensionality while preserving spatial invariance

Input feature map

Max pooling with 2×2 filter and stride 2

Pooled feature map

Convolutional neural networks

CNNs for classification

Convolutional neural networks

CNNs for classification

MIT Introduction to Deep Learning (introtodeeplearning.com)

MIT Introduction to Deep Learning (introtodeeplearning.com)

Deep Learning for Image Synthesis & Segmentation

CNNs for many applications

CNNs for image generation

Encoder

Training autoencoders

$$\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$$

Autoencoders

Autoencoders

Generating images from scratch

Image translation

MRI

СТ

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

Image translation from paired or unpaired data

Paired data

Unpaired data

Wolterink et al., SASHIMI, 2017

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

Image translation with cycle GANs

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

Structure of the discriminator

Structure of the generator:

encoder-decoder

Structure of the generator:

• U-Net

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)

Convolutional Networks for Biomedical Image Segmentation

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)

Summary

Neural Networks

• Perceptron = structural building block

CNNs

- Convolutions for feature extraction
- Convolution \rightarrow nonlinearity \rightarrow pooling
- Stacking layers •

Applications

- Classification •
- Segmentation
- Synthesis •

Summary

Deep Learning for Medical Imaging

Deep learning for medical imaging

prediction disease t 0 processing data From

Deep learning for medical imaging

prediction disease t 0 processing data From

Historical techniques

Analytical reconstruction

Final images

Iterative reconstruction

Deep learning

Arndt et al., Fortschr Röntgenstr, 2021

Image reconstruction by domain-transform manifold learning

Image reconstruction by domain-transform manifold learning

Zhu et al., Nature, 2018

Image reconstruction by domain-transform manifold learning

Image denoising using a cGAN

Generator: turns a noisy image into a noise-free image

Image denoising using a cGAN

Original noisy MRI

Denoised MRI

Ran et al., Medical Image Analysis, 2019

Image denoising using a cGAN

Full dose CT

Low dose CT

Low dose CT after denoising

Yang et al., IEEE Transactions on Medical Imaging, 2018

Example of 2D brain MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Image super-resolution, a self-supervised approach

Zhao et al., Magnetic Resonance Imaging, 2019

Image super-resolution, a self-supervised approach

Quantitative results

Dice score (overlap between manual and automatic segmentations)

Thickness	Interpolation	SMORE	HR (0.9 mm)
1.205 mm	0.969	0.9696	0.9699
1.928 mm	0.9665	0.9690	
3.0125 mm	0.9602	0.9675	
3.856 mm	0.9524	0.9632	
4.82 mm	0.9408	0.9607	

Zhao et al., Magnetic Resonance Imaging, 2019

Deep learning for medical imaging

prediction disease t 0 processing data From

Segmentation with a sliding-window CNN

Zhang et al., NeuroImage, 2015

Segmentation with a CNN

Input images (T1w, T2w, FA)

Manual segmentations (CSF, GM, WM)

CNN segmentations (CSF, GM, WM)

Zhang et al., NeuroImage, 2015

Segmentation with a U-Net

Results on the ISBI cell tracking challenge

Segmentation results (IOU "intersection over union")

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

Ronneberger et al., MICCAI, 2015 (61570 citations on 10/05/2023)

Segmentation with a U-Net

Adult cohort

Paediatric cohort

Han et al., NeuroImage, 2020

nnU-Net ('*no new net*')

Isensee et al., Nature Methods, 2021

Segmentation with a sliding-window CNN

T1c sequence

Manual Segmentation

T1c sequence

Manual Segmentation

Pereira et al., IEEE TMI, 2016

Unsupervised anomaly segmentation in brain MR images

Baur et al., MICCAI Brainlesion Workshop, 2019

Unsupervised anomaly segmentation in brain MR images

Baur et al., MICCAI Brainlesion Workshop, 2019

Unsupervised anomaly segmentation in brain MR images

True Positives False Positives False Negatives

Baur et al., MICCAI Brainlesion Workshop, 2019

Deep learning for medical imaging

prediction disease t 0 processing data From

What is Alzheimer's disease?

- Most common cause of dementia
- Disorder caused by abnormal brain changes
- Trigger decline in cognitive abilities, severe enough to impair daily life
- Affect behaviour, feelings and relationships
- Progressive disease

Imaging in Alzheimer's disease

• Structural magnetic resonance imaging (MRI) to detect atrophy

Cognitively normal

Mild cognitive impairment

Alzheimer's disease

Disease progression

ARAMIS

95

Classification of Alzheimer's disease using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

ARAMIS LAB BRAIN DATA SCIENCE 97

Classification of Alzheimer's disease using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

Disease recognition

Computer-aided diagnosis of dementia in a clinical data warehouse

Data set		Task	Classification strategy		
		-	CNN	SVM	
Clinical D	D vs NDNL	63.2	61.9	 D: dementia, NDNL: no dementia and no lesions, NDL: no dementia with lesions 	
	D vs NDL	67.5	64.6		
ADNI Alzheimer's Disease					

Balanced accuracy (%)

Balanced accuracy ~20 percent points lower than when training/testing on research data

Bottani et al., Under revision at Medical Image Analysis · hal-03656136

Identification and subtyping of intracranial haemorrhage (ICH)

Ye et al., European Radiology, 2019

Deep learning for medical imaging

prediction disease t 0 processing data From

Deep learning for the diagnosis and prognosis of AD

- 'Diagnostic' classification task
 - Differentiate cognitively normal (CN) subjects from patients with AD: CN vs AD
 - Not clinically relevant but useful when developing algorithms
- 'Predictive' classification task
 - Different patients with mild cognitive impairment (MCI) that will stay stable (sMCI) from the ones that will progress to AD dementia (pMCI): sMCI vs pMCI
 - Clinically relevant but more difficult

Classification of mild cognitive impairment using CNNs

Wen, Thibeau-Sutre et al., Medical Image Analysis, 2020

Generation of images that mimic disease progression

ARAMIS

BRAIN DATA SCIENCE

AB

104

Ravi et al., MICCAI, 2019

Generation of images that mimic disease progression

Neurodegeneration simulation of a 69-year old ADNI participant

Ravi et al., MICCAI, 2019

Deep learning for medical imaging

prediction disease t 0 processing data From

Challenges that currently prevent bringing DL to the clinic

- DL usually requires a large amount of data, which can be hard to collect for some medical applications.
- Research cohort specificities may prevent the application of models trained on such data to clinical cohorts.
- Algorithms are often black boxes, with poor interpretability of the decision-making process.
- Validating models accurately is crucial as the algorithms can very easily overfit the training data.

Deep learning for medical imaging

Further reading:

• Litjens et al., 2017. A survey on deep learning in medical image analysis. *Medical Image Analysis* 42, 60-88.

doi:10.1016/j.media.2017.07.005

- Burgos et al., 2020. Deep learning for brain disorders: from data processing to disease treatment.
 Briefings in Bioinformatics. doi:10.1093/bib/bbaa310
- Zhou, S.K., Greenspan, H. and Shen, D. eds., 2017. Deep learning for medical image analysis. Academic Press. <u>ISBN:9780128104088</u>